BFE1224, prodrug of ravuconazole, is a novel, once-daily, oral, triazole antifungal drug, and currently in development for the treatment of onychomycosis. The clinical drug-drug interaction (DDI) potential of BFE1224 with cytochrome P450 (CYP) and transporter was assessed by using two types of cocktails in healthy subjects in separate clinical studies. The CYP and transporter cocktails consisted of caffeine/tolbutamide/omeprazole/dextromethorphan/midazolam used in study 1 and digoxin/rosuvastatin used in study 2. In addition, repaglinide was separately administered to the same subjects in study 2. There were no major effects on the pharmacokinetics of CYP and transporter substrates, except for an approximate threefold increase in midazolam exposure after oral administration of BFE1224. The clinical DDIs of BFE1224 were mild for CYP3A and minor for other major CYPs (CYP1A2/2C8/2C9/2C19/2D6) as well as those of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporting polypeptide (OATP) 1B1, and OATP1B3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132366PMC
http://dx.doi.org/10.1111/cts.12557DOI Listing

Publication Analysis

Top Keywords

cyp transporter
12
clinical drug-drug
8
drug-drug interaction
8
potential bfe1224
8
bfe1224 prodrug
8
types cocktails
8
cocktails healthy
8
healthy subjects
8
bfe1224
5
clinical
4

Similar Publications

ABT, Elacridar and Bile-Duct Cannulated Rats: Tools to Understand Pharmacokinetics.

ChemMedChem

January 2025

NRG Therapeutics, Stevenage, United Kingdom.

Optimizing pharmacokinetics is an integral part of drug design, albeit a lesser understood one from the medicinal chemist's perspective. Over the years, molecular tools and experimental strategies have been developed to better understand the fate of compounds. Among these, the use of aminobenzotriazole (ABT), elacridar and bile-duct cannulated rats have been instrumental in gaining valuable PK insights, with a direct impact on drug design.

View Article and Find Full Text PDF

Introduction: Deglycosylated azithromycin (Deg-AZM), a new transgelin agonist with positive therapeutic effects on slow transit constipation, has been approved for clinical trials in 2024. This work investigated the drug metabolism and transport of Deg-AZM to provide research data for further development of Deg-AZM.

Methods: A combination of UPLC-QTOF-MS was used to obtain metabolite spectra of Deg-AZM in plasma, urine, feces and bile.

View Article and Find Full Text PDF

Positioning Enzyme- and Transporter-Based Precipitant Drug-Drug Interaction Studies in Drug Design.

J Med Chem

January 2025

Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States.

assessment of the potential of compounds to affect drug metabolizing enzymes and transporters and perpetrate drug-drug interactions (DDIs) is a common practice in drug research. For the development phase, regulators define an exhaustive list of enzymes and transporters to consider, but DDIs associated with many of these are minor and can be well-managed in the clinic; thus, progression of drug candidates that address unmet medical needs should not be curtailed due to this property. However, some enzymes and transporters are very important in drug disposition, so it is important to avoid/reduce inhibition or induction of these through drug design.

View Article and Find Full Text PDF

The well-established calcineurin inhibitor, tacrolimus, as an immunosuppressive agent, is widely prescribed after organ transplantation. Cytochrome P450 (CYP 450) isoforms are responsible for the metabolism of many features associated with food parameters like phytochemicals, juices, and fruits. This review article summarizes the findings of previous studies to help predict the efficacy or side effects of tacrolimus in the presence of food variables.

View Article and Find Full Text PDF

Interest and limits of using pharmacogenetics in MDMA-related fatalities: A case report.

Forensic Sci Int Genet

December 2024

Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d'Angers, Angers, France.

Interpreting postmortem concentrations of 3,4-Methylenedioxymethamphetamine (MDMA) remains challenging due to the wide range of reported results and the potential idiosyncratic nature of MDMA toxicity. Consequently, forensic pathologists often rely on a body of evidence to establish conclusions regarding the cause and the manner of death in death involving MDMA. Given these issues, implementing pharmacogenetics' (PGx)' testing may be beneficial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!