Imaging flow cytometry is a powerful experimental technique combining the strength of microscopy and flow cytometry to enable high-throughput characterization of cell populations on a detailed microscopic scale. This approach has an increasing importance for distinguishing between different cellular phenotypes such as proliferation, cell division and cell death. In the course of undergoing these different pathways, each cell is characterized by a high amount of properties. This makes it hard to filter the most relevant information for cell state discrimination. The traditional methods for cell state discrimination rely on dye based two-dimensional gating strategies ignoring information that is hidden in the high-dimensional property space. In order to make use of the information ignored by the traditional methods, we present a simple and efficient approach to distinguish biological states within a cell population based on machine learning techniques. We demonstrate the advantages and drawbacks of filter techniques combined with different classification schemes. These techniques are illustrated with two case studies of apoptosis detection in HeLa cells. Thereby we highlight (i) the aptitude of imaging flow cytometry regarding automated, label-free cell state discrimination and (ii) pitfalls that are frequently encountered. Additionally a MATLAB script is provided, which gives further insight regarding the computational work presented in this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955558PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197208PLOS

Publication Analysis

Top Keywords

flow cytometry
16
imaging flow
12
cell state
12
state discrimination
12
apoptosis detection
8
cell
8
traditional methods
8
guide automated
4
automated apoptosis
4
detection sense
4

Similar Publications

Melatonin (MEL), functioning as a circulating hormone, is important for the regulation of ferroptosis in different health scenarios and acts as a crucial antioxidant in cardiovascular diseases. However, its specific function in ferroptosis related to myocardial ischemia-reperfusion injury (MIRI) remains to be fully elucidated. In our research, we utilized a rat model of MIRI induced by coronary artery ligation, along with a cell model subjected to hypoxia/reoxygenation (H/R).

View Article and Find Full Text PDF

Anti-cancer effect of midazolam via downregulating YWHAH in papillary thyroid cancer cells.

Discov Oncol

January 2025

Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.1367 Wenyi West Road, Yuhang District, Hangzhou, 311100, People's Republic of China.

The work is aimed to investigate whether midazolam functions in thyroid cancer and reveal the potential mechanism of action. Cell viability was detected by CCK-8 method when treated by varying doses of midazolam to detect the cytotoxicity of midazolam on human thyroid follicular epithelial cell line and thyroid cancer cell lines. In thyroid cancer cells, EDU staining, wound healing and transwell assays were respectively used to detect cell proliferation, migration and invasion.

View Article and Find Full Text PDF

Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.

View Article and Find Full Text PDF

Milk is a multifaceted biofluid that is essential for infant nutrition and development, yet its cellular and bioactive components, particularly maternal milk cells, remain understudied. Early research on milk cells indicated that they cross the infant's intestinal barrier and accumulate within systemic organs. However, due to the absence of modern analytical techniques, these studies were limited in scope and mechanistic analysis.

View Article and Find Full Text PDF

Macrophages play a crucial role in the immune response during allograft rejection in organ transplantation. Therefore, our study aimed to explore the genomic features of macrophages in mouse heart transplants and use single-cell RNA sequencing to investigate Galectin-9 (Gal-9, Lgals9), a lectin that can mediate the activation and differentiation of immune cells through ligand-receptor interactions, and the effects of its regulation in transplantation. We discovered a new subset of macrophages called "Myoz2+ macrophages", which specifically expressed genes related to myocardial contraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!