miRNAs that Induce Human Cardiomyocyte Proliferation Converge on the Hippo Pathway.

Cell Rep

Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Stanford Cardiovascular Institute and Department of Medicine, Stanford, CA 94305, USA. Electronic address:

Published: May 2018

Understanding the mechanisms that control human cardiomyocyte proliferation might be applicable to regenerative medicine. We screened a whole genome collection of human miRNAs, identifying 96 to be capable of increasing proliferation (DNA synthesis and cytokinesis) of human iPSC-derived cardiomyocytes. Chemical screening and computational approaches indicated that most of these miRNAs (67) target different components of the Hippo pathway and that their activity depends on the nuclear translocation of the Hippo transcriptional effector YAP. 53 of the 67 miRNAs are present in human iPSC cardiomyocytes, yet anti-miRNA screening revealed that none are individually essential for basal proliferation of hiPSC cardiomyocytes despite the importance of YAP for proliferation. We propose a model in which multiple endogenous miRNAs redundantly suppress Hippo signaling to sustain the cell cycle of immature cardiomyocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261450PMC
http://dx.doi.org/10.1016/j.celrep.2018.04.049DOI Listing

Publication Analysis

Top Keywords

human cardiomyocyte
8
cardiomyocyte proliferation
8
hippo pathway
8
mirnas
5
human
5
proliferation
5
mirnas induce
4
induce human
4
proliferation converge
4
hippo
4

Similar Publications

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Objective: Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.

Methods: Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro.

View Article and Find Full Text PDF

The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease.

View Article and Find Full Text PDF

Filamin C (FLNC), recently identified as a causative gene of cardiomyopathy, is widely expressed in cardiomyocytes and is involved in signal transduction between the sarcomere and the plasma membrane. In general, the FLNC truncating variant causes severe dilated cardiomyopathy. A 70-year-old female was referred to our hospital with advanced conduction defects and underwent pacemaker implantation.

View Article and Find Full Text PDF

KLF2-dependent transcriptional regulation safeguards the heart against pathological hypertrophy.

J Mol Cell Cardiol

December 2024

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China. Electronic address:

Background: Our previous single-cell RNA sequencing study in the adult human heart revealed that cardiomyocytes from both the atrium and ventricle display high activities of Krüppel-like factor 2 (KLF2) regulons. However, the role of the transcription factor KLF2 in cardiomyocyte biology remains largely unexplored.

Methods And Results: We employed transverse aortic constriction surgery in male C57BL/6 J mice to develop an in vivo model of cardiac hypertrophy, and generated different in vitro cardiac hypertrophy models in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!