Lower limb stiffness testing in athletic performance: a critical review.

Sports Biomech

Department of Sports Science and Physical Activity, University of Bedfordshire, Bedford, UK.

Published: February 2021

Stiffness describes the resistance of a body to deformation. In regard to athletic performance, a stiffer leg-spring would be expected to augment performance by increasing utilisation of elastic energy. Two-dimensional spring-mass and torsional spring models can be applied to model whole-body (vertical and/or leg stiffness) and joint stiffness. Various tasks have been used to characterise stiffness, including hopping, gait, jumping, sledge ergometry and change of direction tasks. Appropriate levels of reliability have been reported in most tasks, although they vary between investigations. Vertical stiffness has demonstrated the strongest reliability across tasks and may be more sensitive to changes in high-velocity running performance than leg stiffness. Joint stiffness demonstrates the weakest reliability, with ankle stiffness more reliable than knee stiffness. Determination of stiffness has typically necessitated force plate analyses; however, validated field-based equations permit determination of whole-body stiffness without force plates. Vertical, leg and joint stiffness measures have all demonstrated relationships with performance measures. Greater stiffness is typically demonstrated with increasing intensity (i.e., running velocity or hopping frequency). Greater stiffness is observed in athletes regularly subjecting the limb to high ground reaction forces (i.e., sprinters). Careful consideration should be given to the most appropriate assessment of stiffness on a team/individual basis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14763141.2018.1460395DOI Listing

Publication Analysis

Top Keywords

stiffness
16
joint stiffness
12
athletic performance
8
leg stiffness
8
stiffness joint
8
stiffness typically
8
greater stiffness
8
performance
5
lower limb
4
limb stiffness
4

Similar Publications

Wearable robots are often powered by elastic actuators, which can mimic the intrinsic compliance observed in human joints, contributing to safe and seamless interaction. However, due to their increased complexity, when compared to direct drives, elastic actuators are susceptible to faults, which pose significant challenges, potentially compromising user experience and safety during interaction. In this article, we developed a fault-tolerant control strategy for torque assistance in a knee exoskeleton and investigated user experience during a walking task while emulating faults.

View Article and Find Full Text PDF

Background: Sedentary behaviour (SB) is detrimental to cardiometabolic disease (CMD) risk, which can begin in young adulthood. To devise effective SB-CMD interventions in young adults, it is important to understand which context-specific SB (CS-SB) are most detrimental for CMD risk, the lifestyle behaviours that cluster with CS-SBs and the socioecological predictors of CS-SB.

Methods And Analysis: This longitudinal observational study will recruit 500 college-aged (18-24 years) individuals.

View Article and Find Full Text PDF

In this study, a novel acid-induced heat-set soy protein hydrolysate (SPH) gel was successfully developed. The effects of protein (7 and 8 wt%) and glucono-δ-lactone (GDL, 4, 6, 8, and 10 wt%) concentrations on its aggregation and gelation behaviors were investigated by evaluating the structural, rheological, textural, and physical properties of the SPH gel. The structural properties revealed that GDL promoted the formation of SPH aggregates and gels, primarily via disulfide bonds and hydrophobic interactions, which were closely related to the unfolding of the protein structure, exposed hydrophobic groups, decreased protein solubility, and increased particle size and turbidity during the heating process.

View Article and Find Full Text PDF

The preparation of 3D-printed self-healing hydrogels composed of carboxymethyl chitosan and oxidized dextran via stereolithography for biomedical applications.

Int J Biol Macromol

December 2024

National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand.

This study presents a new approach for fabricating 3D-printed self-healing hydrogels via light-assisted 3D printing, utilizing Schiff-base and covalent bonding formations resulting from the reaction between amine and aldehyde functional groups alongside the photopolymerization of methacrylate groups. Two distinct polymers, carboxymethyl chitosan (CMCs) and dextran, were first modified to yield methacrylate-modified carboxymethyl chitosan (CMCs-MA) and oxidized dextran (OD). The structural modifications of these polymers were confirmed using spectroscopic techniques, including H NMR and FTIR analyses.

View Article and Find Full Text PDF

Background: Normal dorsiflexion of the first metatarsophalangeal joint during dynamic activities is critical for effective propulsion. Therapeutic foot orthotics may address the pathomechanical loading and joint kinematics issues faced by this population. This study aims to evaluate the effect of two different types of Custom-made foot orthosis compared to shod condition on the stiffness of the rearfoot, midfoot, and 1st metatarsophalangeal joint during walking in patients with Structural Hallux Limitus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!