Hybrid Mesoporous-Microporous Nanocarriers for Overcoming Multidrug Resistance by Sequential Drug Delivery.

Mol Pharm

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University, No. 174 Shazheng Road , Chongqing 400044 , China.

Published: July 2018

Combination chemotherapy with a modulator and a chemotherapeutic drug has become one of the most promising strategies for the treatment of multidrug resistance (MDR) in cancer therapy. However, the development of nanocarriers with a high payload and sequential release of therapeutic agents poses a significant challenge. In this work, we report a type of hybrid nanocarriers prepared by polydopamine (PDA) mediated integration of the mesoporous MSN core and the microporous zeolite imidazolate frameworks-8 (ZIF-8) shell. The nanocarriers exploit storage capacities for drugs based on the high porosity and molecular sieving capabilities of ZIF-8 for sequential drug release. Particularly, large amounts of an anticancer drug (DOX, 607 μg mg) and a MDR inhibitor curcumin (CUR, 778 μg mg) were sequentially loaded in the mesoporous core via π-π stacking interactions mediated by PDA and in the microporous shell via the encapsulation during ZIF-8 growth. The sustained release of DOX was observed to follow earlier and faster release of CUR by acid-sensitive dissolution of the ZIF-8 shell. Furthermore, the nanoparticles showed good biocompatibility and effective cellular uptake in in vitro evaluations using drug-resistant MCF-7/ADR cancer cells. More importantly, the preferentially released CUR inhibited the drug efflux function of the membrane P-glycoprotein (P-gp), which subsequently facilitated the nuclear transportation of DOX released from the PDA-MSN core, and, in turn, the synergistic effects on killing MDR cancer cells. The hybrid mesoporous-microporous nanocarrier holds great promise for combination chemotherapy applications on the basis of sequential drug release.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.7b01096DOI Listing

Publication Analysis

Top Keywords

sequential drug
12
hybrid mesoporous-microporous
8
multidrug resistance
8
combination chemotherapy
8
mdr cancer
8
zif-8 shell
8
drug release
8
cancer cells
8
drug
6
release
5

Similar Publications

Introduction: Pediatric patients are more likely to experience medication-related errors and serious associated harms. The identification of high-risk medications (HRM) and their study in special populations, such as children with excess body weight (EBW), is a part of safety improvement strategies.

Objective: To generate, through a consensus technique structured by an interdisciplinary group of pediatricians and hospital pharmacists, an operational and updated list of HRM for hospital use in children over 2 years of age.

View Article and Find Full Text PDF

Introduction: The standard of care for stage III colon cancer is 3 or 6 months of double-drug regimen chemotherapy following radical surgery. However, patients with positive circulating tumour DNA (ctDNA) exhibit a high risk of recurrence risk even if they receive standard adjuvant chemotherapy. The potential benefit of intensified adjuvant chemotherapy, oxaliplatin, irinotecan, leucovorin and fluoropyrimidine (FOLFOXIRI), for ctDNA-positive patients remains to be elucidated.

View Article and Find Full Text PDF

Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.

View Article and Find Full Text PDF

MALDI-HiPLEX-IHC mass spectrometry imaging (MSI) represents a newly established workflow to map tens of antibodies linked to photocleavable mass tags (PC-MTs), which report the distribution of antigens in formalin-fixed paraffin-embedded (FFPE) tissue sections. While this highly multiplexed approach has previously been integrated with untargeted methods, the possibility of mapping target cell antigens and performing bottom-up spatial proteomics on the same tissue section has yet to be explored. This proof-of-concept study presents a novel workflow combining MALDI-HiPLEX-IHC with untargeted spatial proteomics to analyze a single FFPE tissue section, using clinical clear cell renal cell carcinoma (ccRCC) tissue as a model.

View Article and Find Full Text PDF

Quality-by-design principles applied to the development and optimisation of lidocaine-loaded dissolving microneedle arrays - a proof-of-concept.

Drug Deliv Transl Res

January 2025

Leicester Institute of Pharmaceutical, Health and Social Care Innovations, Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK.

The use of dissolving microneedle arrays (dMNA) for intradermal and transdermal drug delivery has been a growing trend in the field for the past decades. However, a lack of specific regulatory standards still hinders their clinical development and translation to market. It is also well-known that dMNA composition significantly impacts their performance, with each new formulation potentially presenting a challenge for developers, manufacturers and regulatory agencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!