Aminoglycosides (AG) are antibiotics that lower the accuracy of protein synthesis by targeting a highly conserved RNA helix of the ribosomal A-site. The discovery of AGs that selectively target the eukaryotic ribosome, but lack activity in prokaryotes, are promising as antiprotozoals for the treatment of neglected tropical diseases, and as therapies to read-through point-mutation genetic diseases. However, a single nucleobase change A1408G in the eukaryotic A-site leads to negligible affinity for most AGs. Herein we report the synthesis of 6'-fluorosisomicin, the first 6'-fluorinated aminoglycoside, which specifically interacts with the protozoal cytoplasmic rRNA A-site, but not the bacterial A-site, as evidenced by X-ray co-crystal structures. The respective dispositions of 6'-fluorosisomicin within the bacterial and protozoal A-sites reveal that the fluorine atom acts only as a hydrogen-bond acceptor to favorably interact with G1408 of the protozoal A-site. Unlike aminoglycosides containing a 6'-ammonium group, 6'-fluorosisomicin cannot participate in the hydrogen-bonding pattern that characterizes stable pseudo-base-pairs with A1408 of the bacterial A-sites. Based on these structural observations it may be possible to shift the biological activity of aminoglycosides to act preferentially as antiprotozoal agents. These findings expand the repertoire of small molecules targeting the eukaryotic ribosome and demonstrate the usefulness of fluorine as a design element.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201800166DOI Listing

Publication Analysis

Top Keywords

eukaryotic ribosome
8
a-site
5
structure-based design
4
design eukaryote-selective
4
eukaryote-selective antiprotozoal
4
antiprotozoal fluorinated
4
fluorinated aminoglycoside
4
aminoglycoside aminoglycosides
4
aminoglycosides antibiotics
4
antibiotics lower
4

Similar Publications

Phylogenetic position of the subfamily Symphrasinae (Insecta: Neuroptera), its intergeneric relationships and evolution of the raptorial condition within Mantispoidea.

Invertebr Syst

January 2025

Instituto de Biología, UNAM, Departamento de Zoología, Colección Nacional de Insectos, Apartado Postal 70-153, 04510, Ciudad de México, Mexico.

The superfamily Mantispoidea (Insecta: Neuroptera) includes the families Berothidae, Rhachiberothidae and Mantispidae. Among these taxa, the last two are collectively known as Raptorial Mantispoidea due to the presence of grasping forelegs for predatory habits. The Mantispidae classically included the subfamilies Symphrasinae, Drepanicinae, Calomantispinae and Mantispinae, yet recent research challenged this classification scheme as well as the monophyly of this family resulting in Symphrasinae being transferred to Rhachiberothidae.

View Article and Find Full Text PDF

The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.

View Article and Find Full Text PDF

Lifecycle of an introduced (Bucephalidae) trematode in the Tone River system, Japan.

J Helminthol

January 2025

Toho University, Faculty of Science, 2-2-1 Miyama, Funabashi, Chiba274-8510, Japan.

During 2021 through 2023, the golden mussel and freshwater fishes were sampled from 28 sites in the Tone River system, Japan, and adult trematodes of were found in the fishes. Molecular and morphological analyses based on 28S rDNA and the ITS1-5.8S-ITS2 region revealed the trematode as '', previously reported in Mainland China and likely introduced to Japan.

View Article and Find Full Text PDF

Gut microbial composition associated with risk of premature aging in women with Yin-deficiency constitution.

Front Cell Infect Microbiol

January 2025

National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.

Background: Yin-deficiency constitution (YinDC) refers to a traditional Chinese medicine concept, characterized by an imbalance state that includes an imbalance in the gut microbiota, resulting from a relative deficiency of Yin fluids within the body. In recent years, it has become apparent that the composition and structure of the gut microbiota play a significant role in the aging process. The imbalance of gut microbiota in YinDC may accelerate the aging process.

View Article and Find Full Text PDF

Objective: Mitochondrial genome sequences are very useful for understanding the mitogenome evolution itself and reconstructing phylogeny of different plant lineages. Bauhinia purpurea, a species from the legume family Leguminosae, is widely distributed in South China and has high ornamental value. Here, we sequenced and assembled the mitogenome of B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!