Objectives: To determine whether the drug saxagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor which is utilized for the treatment of Diabetes Mellitus, has neuroprotective effects in the animal model of Parkinson's disease (PD) induced by 6-hydroxydopamine (6-OHDA) in rats.

Methods: Male Wistar rats (weighing 280-300 g) received a bilateral infusion of 6-OHDA in the substantia nigra. Twenty-four hours later, they were treated with saxagliptin (1 mg/kg, p.o) once daily, for 21 days. The motor function was evaluated using the open field and rotarod (RT) tests. In addition, cognition was assessed with the novel object recognition test (ORT). After the evaluation of the behavioural tests, the animals were transcardially perfused to perform immunohistochemistry staining for tyrosine hydroxylase (TH) in the substantia nigra pars compacta (SNpc).

Key Findings: Saxagliptin impaired the memory of animals in the sham group.

Conclusions: Saxagliptin treatment did not exhibit neuroprotection and it did not improve the cognitive and motor deficits in the 6-OHDA model of PD. Interestingly, when saxagliptin was administered to the sham animals, a cognitive decline was observed. Therefore, this drug should be investigated as a possible treatment for PTSD.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jphp.12936DOI Listing

Publication Analysis

Top Keywords

substantia nigra
8
saxagliptin
5
ineffectiveness saxagliptin
4
saxagliptin neuroprotective
4
neuroprotective drug
4
drug 6-ohda-lesioned
4
6-ohda-lesioned rats
4
rats objectives
4
objectives determine
4
determine drug
4

Similar Publications

The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development.

View Article and Find Full Text PDF

The motor symptoms of Parkinson's Disease are attributed to the degeneration of dopamine neurons in the substantia nigra pars compacta (SNc). Previous work in the MCI-Park mouse model has suggested that the loss of somatodendritic dopamine transmission predicts the development of motor deficits. In the current study, brain slices from MCI-Park mice were used to investigate dopamine signaling in the SNc prior to and through the onset of movement deficits.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia.

View Article and Find Full Text PDF

Evolving Landscape of Parkinson's Disease Research: Challenges and Perspectives.

ACS Omega

January 2025

CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States.

Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects movement. It occurs due to a gradual deficit of dopamine-producing brain cells, particularly in the substantia nigra. The precise etiology of PD is not fully understood, but it likely involves a combination of genetic and environmental factors.

View Article and Find Full Text PDF

Background: The incidence of Parkinson's disease (PD) increases with age. Previous pharmacological studies have shown the potential of Huatan Jieyu Granules (HGs) for the treatment of PD, but the exact mechanisms remain unclear. This study aimed to explore the effects of herbal treatment on PD using mouse models and single-cell sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!