erythroid differentiation from primary human cells is valuable to develop genetic strategies for hemoglobin disorders. However, current erythroid differentiation methods are encumbered by modest transduction rates and high baseline fetal hemoglobin production. In this study, we sought to improve both genetic modification and hemoglobin production among human erythroid cells . To model therapeutic strategies, we transduced human CD34 cells and peripheral blood mononuclear cells (PBMCs) with lentiviral vectors and compared erythropoietin-based erythroid differentiation using fetal-bovine-serum-containing media and serum-free media. We observed more efficient transduction (85%-93%) in serum-free media than serum-containing media (20%-69%), whereas the addition of knockout serum replacement (KSR) was required for serum-free media to promote efficient erythroid differentiation (96%). High-level adult hemoglobin production detectable by electrophoresis was achieved using serum-free media similar to serum-containing media. Importantly, low fetal hemoglobin production was observed in the optimized serum-free media. Using KSR-containing, serum-free erythroid differentiation media, therapeutic adult hemoglobin production was detected at protein levels with β-globin lentiviral transduction in both CD34 cells and PBMCs from sickle cell disease subjects. Our erythroid differentiation system provides a practical evaluation platform for adult hemoglobin production among human erythroid cells following genetic manipulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948232PMC
http://dx.doi.org/10.1016/j.omtm.2018.03.007DOI Listing

Publication Analysis

Top Keywords

erythroid differentiation
28
hemoglobin production
28
serum-free media
20
adult hemoglobin
16
media
9
serum-free erythroid
8
genetic modification
8
high-level adult
8
hemoglobin
8
erythroid
8

Similar Publications

Tris(2-chloroethyl) Phosphate Leads to Unbalanced Circulating Erythrocyte in Mice by Activating both Medullary and Extramedullary Erythropoiesis.

Environ Sci Technol

January 2025

Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.

Tris(2-chloroethyl) phosphate (TCEP), a prevalent organophosphorus flame retardant, has been identified in various environmental matrices and human blood samples, provoking alarm regarding its hematological toxicity, a subject that has not been thoroughly investigated. Red blood cells (RBCs), or erythrocytes, are the predominant cell type in peripheral blood and are crucial for the maintenance of physiological health. This investigation employed oral gavage to examine the effects of TCEP exposure on erythrocyte counts in mice and to clarify the underlying mechanisms.

View Article and Find Full Text PDF

Differentiation therapy with all-trans retinoic acid (ATRA) is well established for acute promyelocytic leukemia (APL). However, the narrow application and tolerance development of ATRA remain to be improved. A number of kinase inhibitors have been reported to induce cell differentiation.

View Article and Find Full Text PDF

Overactivation of the Transforming Growth Factor Beta (TGF-β) pathway is implicated in the pathogenesis of cytopenias in Myelodysplastic syndromes (MDS) and Acute Myeloid Leukemia (AML). IOA-359 and IOA-360 are potent small molecule inhibitors of the TGF-beta Receptor type I kinase (TGF-βRI, also referred to as ALK5, activin receptor-like kinase 5) that abrogate SMAD phosphorylation in hematopoietic cell lines. Both inhibitors were able to inhibit TGF-β mediated gene transcription at specific doses.

View Article and Find Full Text PDF

ID3 promotes erythroid differentiation and is repressed by a TAL1/PRMT6 complex.

J Biol Chem

December 2024

University of Stuttgart, Institute of Biomedical Genetics, Department of Eukaryotic Genetics, Allmandring 31, 70569 Stuttgart, Germany. Electronic address:

Erythropoiesis is controlled by transcription factors that recruit epigenetic cofactors to establish and maintain erythrocyte-specific gene expression patterns while repressing alternative lineage commitment. The transcription factor TAL1 is critical for establishing erythroid gene expression. It acts as an activator or repressor of genes, depending on associated epigenetic cofactors.

View Article and Find Full Text PDF

Ninety-nine percent of alpha-synuclein (α-syn) in the human body is distributed in erythrocytes. However, the role that α-syn plays in erythropoiesis remains unclear. To determine the effect of α-syn on erythroid differentiation, the erythroid cells, derived from human CD34+ progenitors in the umbilical cord, were cultured in a system composed of a series of cytokines and harvested after 6 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!