Brain-derived neurotrophic factor (BDNF) may represent a therapeutic for chronic epilepsy, but evaluating its potential is complicated by difficulties in its delivery to the brain. Here, we describe the effects on epileptic seizures of encapsulated cell biodelivery (ECB) devices filled with genetically modified human cells engineered to release BDNF. These devices, implanted into the hippocampus of pilocarpine-treated rats, highly decreased the frequency of spontaneous seizures by more than 80%. These benefits were associated with improved cognitive performance, as epileptic rats treated with BDNF performed significantly better on a novel object recognition test. Importantly, long-term BDNF delivery did not alter normal behaviors such as general activity or sleep/wake patterns. Detailed immunohistochemical analyses revealed that the neurological benefits of BDNF were associated with several anatomical changes, including reduction in degenerating cells and normalization of hippocampal volume, neuronal counts (including parvalbumin-positive interneurons), and neurogenesis. In conclusion, the present data suggest that BDNF, when continuously released in the epileptic hippocampus, reduces the frequency of generalized seizures, improves cognitive performance, and reverts many histological alterations associated with chronic epilepsy. Thus, ECB device-mediated long-term supplementation of BDNF in the epileptic tissue may represent a valid therapeutic strategy against epilepsy and some of its co-morbidities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948312PMC
http://dx.doi.org/10.1016/j.omtm.2018.03.001DOI Listing

Publication Analysis

Top Keywords

chronic epilepsy
8
cognitive performance
8
bdnf
7
seizure-suppressant neuroprotective
4
neuroprotective effects
4
effects encapsulated
4
encapsulated bdnf-producing
4
bdnf-producing cells
4
cells rat
4
rat model
4

Similar Publications

Background: Seizures, including status epilepticus (SE), are common in anti-NMDA receptor encephalitis (NMDARE). We aimed to describe clinical and electrographic features of patients with seizures with NMDARE, determine factors associated with SE, and describe long-term seizure outcomes.

Methods: We retrospectively identified patients with seizures in the setting of NMDARE treated at inpatient Mayo Clinic sites during the acute phase of encephalitis between October 2008 and March 2023.

View Article and Find Full Text PDF

Neurosurgery for mental conditions and pain: An historical perspective on the limits of biological determinism.

Surg Neurol Int

December 2024

Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States.

Neurosurgical operations treat involuntary movement disorders (MvDs), spasticity, cranial neuralgias, cancer pain, and other selected disorders, and implantable neurostimulation or drug delivery devices relieve MvDs, epilepsy, cancer pain, and spasticity. In contrast, studies of surgery or device implantations to treat chronic noncancer pain or mental conditions have not shown consistent evidence of efficacy and safety in formal, randomized, controlled trials. The success of particular operations in a finite set of disorders remains at odds with disconfirming results in others.

View Article and Find Full Text PDF

Activation of glutamine synthetase (GS) as a new strategy for the treatment of major depressive disorder and other GS-related diseases.

Acta Pharmacol Sin

January 2025

Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.

Glutamine synthetase (GS) plays a crucial role in the homeostasis of the glutamate-glutamine cycle in the brain. Hypoactive GS causes depressive behaviors. Under chronic stress, GS has no change in expression, but its activity is decreased due to nitration of tyrosine (Tyr).

View Article and Find Full Text PDF

Subchronic Treatment with CBZ Transiently Attenuates Its Anticonvulsant Activity in the Maximal Electroshock-Induced Seizure Test in Mice.

Int J Mol Sci

December 2024

Independent Experimental Neuropathophysiology Unit, Chair and Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, PL-20-090 Lublin, Poland.

The objective of this study is to evaluate the anticonvulsant efficacy of carbamazepine (CBZ) following acute and chronic administration across four treatment protocols in a murine model of maximal electroshock-induced seizures. A single dose of the drug was utilized as a control. The neurotoxic effects were evaluated in the chimney test and the passive avoidance task.

View Article and Find Full Text PDF

Regulation of Glutamate Transporter Type 1 by TSA and the Antiepileptic Mechanism of TSA.

Neurochem Res

January 2025

Huazhong University of Science and Technology, Tongji Medical College, Wuhan, Hubei, 430000, China.

Epilepsy (EP) is a neurological disorder characterized by abnormal, sudden neuronal discharges. Seizures increase extracellular glutamate levels, causing excitotoxic damage. Glutamate transporter type 1 (GLT-1) and its human homologue excitatory amino acid transporter-2 (EAAT2) clear 95% of extracellular glutamate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!