The frictional properties of nanoparticles have been studied to gain insight into the fundamental origin of sliding friction. Using molecular dynamics we investigate frictional properties of aluminum and palladium nanoparticles deposited on a graphene layer. We study the time evolution of the total momentum of the system, the total and potential energies, the temperature, the velocity and position of the center of mass, the dimensions of the nanoparticle, and the friction and substrate forces acting on the particle. We also study how the friction force depends on the nanoparticle-graphene contact area and the temperature. The tribological properties of nanoparticles strongly depend on the materials. The particles move in an irregular (saw-like) manner. The averaged friction force depends nearly linearly on the contact area and non-monotonously on temperature. We observe ordered crystalline domains of atoms at the bottom surface of the metal particles, but the peaks of radial distribution function are blurred indicating that the nanoparticles are amorphous or polycrystalline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942369 | PMC |
http://dx.doi.org/10.3762/bjnano.9.115 | DOI Listing |
Sci Rep
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Samayapuram, Trichy, India.
Lubricants are pivotal in mitigating friction and wear between surfaces, ensuring seamless movement of solid objects. However, the predominant use of petroleum-based lubricants in the automotive and industrial ssectors raises substantial concerns for future energy security. The exploration of vegetable oils as an alternative lubricant in the automotive industry was motivated by the depletion of fossil fuels and escalating environmental concerns.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Biosystem Engineering Department, Tarbiat Modares University (TMU), Tehran, Iran.
Today, there are environmental problems all over the world due to the emission of greenhouse gasses caused by the combustion of diesel fuel. The excessive consumption and drastic reduction of fossil fuels have prompted the leaders of various countries, including Iran, to put the use of alternative and clean energy sources on the agenda. In recent years, the use of biofuels and the addition of nanoparticles to diesel fuel have reduced pollutant emissions, improved the environment, and enhanced the physicochemical properties of the fuel.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!