Cytochrome , a dimeric multi-subunit electron-transport protein embedded in the inner mitochondrial membrane, is a major drug target for the treatment and prevention of malaria and toxoplasmosis. Structural studies of cytochrome from mammalian homologues co-crystallized with lead compounds have underpinned structure-based drug design to develop compounds with higher potency and selectivity. However, owing to the limited amount of cytochrome that may be available from parasites, all efforts have been focused on homologous cytochrome complexes from mammalian species, which has resulted in the failure of some drug candidates owing to toxicity in the host. Crystallographic studies of the native parasite proteins are not feasible owing to limited availability of the proteins. Here, it is demonstrated that cytochrome is highly amenable to single-particle cryo-EM (which uses significantly less protein) by solving the apo and two inhibitor-bound structures to ∼4.1 Å resolution, revealing clear inhibitor density at the binding site. Therefore, cryo-EM is proposed as a viable alternative method for structure-based drug discovery using both host and parasite enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947725PMC
http://dx.doi.org/10.1107/S2052252518001616DOI Listing

Publication Analysis

Top Keywords

structure-based drug
12
cytochrome complexes
8
drug discovery
8
cytochrome
6
drug
5
x-ray cryo-em
4
cryo-em structures
4
structures inhibitor-bound
4
inhibitor-bound cytochrome
4
complexes structure-based
4

Similar Publications

Advances in structure-based allosteric drug design.

Curr Opin Struct Biol

December 2024

State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development, and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptides & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China. Electronic address:

The identification of allosteric binding sites forms a critical connection between structural and computational biology, substantially advancing the discovery of allosteric drugs. However, the prevailing strategies for allosteric drug development predominantly rely on high-throughput screening, which suffers from high failure rates due to a limited understanding of allosteric mechanisms. This review collects insights from case studies on allosteric mechanisms, protein structure databases and computation algorithm developments, aiming to enhance our comprehension of allostery and guide more effective allosteric drug development.

View Article and Find Full Text PDF

Structure-Based Design of "Head-to-Tail" Macrocyclic PROTACs.

JACS Au

December 2024

State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No. 345 Lingling Road, Shanghai 200032, China.

Macrocyclization is a compelling strategy for conventional drug design for improving biological activity, target specificity, and metabolic stability, but it was rarely applied to the design of PROTACs possibly due to the mechanism and structural complexity. Herein, we report the rational design of the first series of "Head-to-Tail" macrocyclic PROTACs. The resulting molecule exhibited pronounced Brd4 protein degradation with low nM DC values while almost totally dismissing the "hook effect", which is a general character and common concern of a PROTAC, in multiple cancer cell lines.

View Article and Find Full Text PDF

Design, synthesis and biological evaluation of galantamine analogues for cognitive improvement in Alzheimer's disease.

Eur J Med Chem

December 2024

Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China. Electronic address:

Galantamine plays a crucial role in the management of brain disorders. In this study, a series of galantamine analogues were designed, synthesized and evaluated as potential therapeutic agents for Alzheimer's disease (AD). Compound C2, a dual inhibitor of cholinesterase, was obtained by introducing a benzylpyridine ring to the hydroxyl group of galantamine.

View Article and Find Full Text PDF

Tuberculosis (TB) is a global health challenge associated with considerable levels of illness and mortality worldwide. The development of innovative therapeutic strategies is crucial to combat the rise of drug-resistant TB strains. DNA Gyrase A (GyrA) and serine/threonine protein kinase (PknB) are promising targets for new TB medications.

View Article and Find Full Text PDF

Gallic Acid: A Potent Metabolite Targeting Shikimate Kinase in .

Metabolites

December 2024

Pharmacognosy and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia.

is a highly multidrug-resistant pathogen resistant to almost all classes of antibiotics; new therapeutic strategies against this infectious agent are urgently needed. Shikimate kinase is an enzyme belonging to the shikimate pathway and has become a potential target for drug development. This work describes the search for Food and Drug Administration (FDA)-approved drugs and natural compounds, including gallic acid, that could be repurposed as selective shikimate kinase inhibitors by integrated computational and experimental approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!