A major bottleneck in plant breeding has been the much limited genetic base and much reduced genetic diversity in domesticated, cultivated germplasm. Identification and utilization of favorable gene loci or alleles from wild or progenitor species can serve as an effective approach to increasing genetic diversity and breaking this bottleneck in plant breeding. This study was conducted to identify quantitative trait loci (QTL) in wild or progenitor petunia species that can be used to improve important horticultural traits in garden petunia. An F recombinant inbred population derived between and was phenotyped for plant height, plant spread, plant size, flower counts, flower diameter, flower length, and days to anthesis in Florida in two consecutive years. Transgressive segregation was observed for all seven traits in both years. The broad-sense heritability estimates for the traits ranged from 0.20 (days to anthesis) to 0.62 (flower length). A genome-wide genetic linkage map consisting of 368 single nucleotide polymorphism bins and extending over 277 cM was searched to identify QTL for these traits. Nineteen QTL were identified and localized to five linkage groups. Eleven of the loci were identified consistently in both years; several loci explained up to 34.0% and 24.1% of the phenotypic variance for flower length and flower diameter, respectively. Multiple loci controlling different traits are co-localized in four intervals in four linkage groups. These intervals contain desirable alleles that can be introgressed into commercial petunia germplasm to expand the genetic base and improve plant performance and flower characteristics in petunia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027870PMC
http://dx.doi.org/10.1534/g3.118.200128DOI Listing

Publication Analysis

Top Keywords

flower length
12
quantitative trait
8
trait loci
8
loci controlling
8
flower
8
recombinant inbred
8
inbred population
8
bottleneck plant
8
plant breeding
8
genetic base
8

Similar Publications

Mitochondrial genome of : features, RNA editing, and insights into male sterility.

Front Plant Sci

January 2025

Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China.

Introduction: Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. , a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties.

View Article and Find Full Text PDF

Tartary buckwheat (Fagopyrum tataricum), a functional grain known for its medicinal and nutritional properties, has garnered significant attention due to its high flavonoid content and unique health benefits. Heat stress during the flowering stage can lead to sterility in Tartary buckwheat, resulting in reduced yields. This study investigates the effects of a treatment (30/27 °C for 7 days) on flower development, fertility, stress physiology, and gene expression in Tartary buckwheat, while also validating the efficacy of hormone treatments in alleviating the negative effects of heat stress.

View Article and Find Full Text PDF

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.

View Article and Find Full Text PDF

Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.

View Article and Find Full Text PDF

Morphometric Investigation of a Species Complex in Section Series (Leguminosae, Caesalpinioideae).

Plants (Basel)

January 2025

Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina s.n., Feira de Santana 44036-900, Bahia, Brazil.

series was created by Barneby in 1991, embracing species diagnosed by their small subshrubby habit and the presence of gland-tipped setae and trimerous flowers. Most species are endemic to Northeastern Brazil, and some possess characters deemed diagnostic which nonetheless overlap, making species identification difficult. Our study aimed to test species circumscriptions and sets of characters that could be applied to unequivocally distinguish the species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!