A combination approach of a fragment screening and "SAR by catalog" was used for the discovery of bromodomain-containing protein 4 (BRD4) inhibitors. Initial screening of 3695-fragment library against bromodomain 1 of BRD4 using thermal shift assay (TSA), followed by initial hit validation, resulted in 73 fragment hits, which were used to construct a follow-up library selected from available screening collection. Additionally, analogs of inactive fragments, as well as a set of randomly selected compounds were also prepared (3 × 3200 compounds in total). Screening of the resulting sets using TSA, followed by re-testing at several concentrations, counter-screen, and TR-FRET assay resulted in 18 confirmed hits. Compounds derived from the initial fragment set showed better hit rate as compared to the other two sets. Finally, building dose-response curves revealed three compounds with IC = 1.9-7.4 μM. For these compounds, binding sites and conformations in the BRD4 (4UYD) have been determined by docking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2018.05.010 | DOI Listing |
Eur J Med Chem
December 2024
Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:
Bromodomain-containing protein 4 (BRD4) has been identified as a promising target in drug discovery, and the development of novel specific BRD4 bromodomain inhibitors will benefit anti-inflammatory drug discovery as well as bromodomain function role disclose. Herein, inspired by marine quinazolinone alkaloid penipanoid C, we designed and synthesized a series of quinazolin-4(3H)-ones with diverse linkers between two aromatic ring systems. Among them, compound 25 possessed good in vitro BRD4 inhibitory activities (IC = 3.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States.
Protein degradation using proteolysis targeting chimeras (PROTACs) represents a promising therapeutic strategy. PROTACs are heterobifunctional molecules that consist of a target-binding moiety and an E3 ligase binding moiety, connected by a linker. These fragments are frequently united via amide bonds.
View Article and Find Full Text PDFJ Med Chem
December 2024
China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.
Pan-BD2 inhibitors have been shown to retain an antileukemia effect and display less dose-limiting toxicities than pan-BET inhibitors. However, it is necessary to consider the potential off-target toxicity associated with the inhibition of four BET BD2 proteins. To date, no BRD4 BD2 domain selective inhibitor has been reported.
View Article and Find Full Text PDFJ Med Chem
December 2024
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
Bromodomain-containing protein 4 (BRD4) is the most promising target for the treatment of triple-negative breast cancer (TNBC). However, its inherent resistant and acquired drug resistance limits its potential clinical application. Recently it has been shown that cyclin-dependent kinases 4/6 (CDK4/6) inhibitors can reincrease the sensitivity of TNBC cells to BRD4 inhibitors by combination therapy, so we designed a series of dual target CDK6/BRD4 inhibitors.
View Article and Find Full Text PDFAdv Pharmacol
November 2024
Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!