Adaptation to Phosphate Scarcity: Tips from Arabidopsis Roots.

Trends Plant Sci

Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO) del Centro de Investigación y Estudios Avanzados, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Irapuato, Guanajuato, México. Electronic address:

Published: August 2018

Phosphorus (P) availability is a limiting factor for plant growth and development. Root tip contact with low Pi media triggers diverse changes in the root architecture of Arabidopsis thaliana. The most conspicuous among these modifications is the inhibition of root growth, which is triggered by a shift from an indeterminate to a determinate root growth program. This phenomenon takes place in the root tip and involves a reduction in cell elongation, a decrease in cell proliferation, and the induction of premature cell differentiation, resulting in meristem exhaustion. Here, we review recent findings in the root response of A. thaliana to low Pi availability and discuss the cellular and genetic basis of the inhibition of root growth in Pi-deprived seedlings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tplants.2018.04.006DOI Listing

Publication Analysis

Top Keywords

root growth
12
inhibition root
8
root
7
adaptation phosphate
4
phosphate scarcity
4
scarcity tips
4
tips arabidopsis
4
arabidopsis roots
4
roots phosphorus
4
phosphorus availability
4

Similar Publications

This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.

View Article and Find Full Text PDF

Parasitic plants are a diverse and unique polyphyletic assemblage of flowering plants that survive by obtaining resources via direct vascular connections to a host plant. Ecologically important in their native ecosystems, these typically cryptic plants remain understudied and fundamental knowledge of the biology, ecology, and evolution of most species is lacking. This gap limits our understanding of ecosystems and conservation management.

View Article and Find Full Text PDF

As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.

View Article and Find Full Text PDF

The continuous contamination of heavy metals (HMs) in our ecosystem due to industrialization, urbanization and other anthropogenic activities has become a serious environmental constraint to successful crop production. Lead (Pb) toxicity causes ionic, oxidative and osmotic injuries which induce various morphological, physiological, metabolic and molecular abnormalities in plants. Polyethylene glycol (PEG) is widely used to elucidate drought stress induction and alleviation mechanisms in treated plants.

View Article and Find Full Text PDF

An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!