Background: Leukaemia is a malignant leukocyte disorder with a high fatality rate, and current treatments for this disease are unsatisfactory. Therefore, new therapeutic strategies for leukaemia must be developed. Malaria parasite infection has been shown to be effective at combating certain neoplasms in animal experiments. This study is to demonstrate the anti-leukaemia activity of malaria parasite Plasmodium yoelii (P. yoelii) infection,.
Methods: In this study, the proportion of CD3, CD19, CD11b and Mac-3 cells was analysed by flow cytometry; the levels of IFN-γ and TNF-α in individual serum samples were measured by enzyme-linked immunosorbent assay, and the phagocytic activity of macrophages and natural killer (NK) cell activity were measured by flow cytometry.
Results: We found that P. yoelii infection significantly attenuated the growth of WEHI-3 cells in mice. In addition, tumor cell infiltration into the murine liver and spleen was markedly reduced. We also demonstrated that malaria parasite infection elicited anti-leukaemia activity by promoting immune responses, including increasing the surface markers of T cells (CD3) and B cells (CD19); decreasing the surface markers of monocytes (CD11b) and macrophages (Mac-3); inducing the secretion of IFN-γ and TNF-α; and increasing NK cell and macrophage activity.
Conclusions: Malaria parasite infection significantly decreases the number of myeloblasts and inhibits neoplasm proliferation in mice. In addition, malaria parasite infection inhibits murine leukaemia by promoting immune responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954458 | PMC |
http://dx.doi.org/10.1186/s40249-018-0433-4 | DOI Listing |
Malar J
January 2025
Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
Malaria remains a significant public health challenge, particularly in low- and middle-income countries, despite ongoing efforts to eradicate the disease. Recent advancements, including the rollout of malaria vaccines, such as RTS,S/AS01 and R21/Matrix-M™, offer new avenues for prevention. However, the rise of resistance to anti-malarial medications necessitates innovative strategies.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
January 2025
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France.
The apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in Plasmodium spp. malaria parasites. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.
Background: To understand the emergence and spread of drug-resistant parasites in malaria-endemic areas, accurate assessment and monitoring of antimalarial drug resistance markers is critical. Recent advances in next-generation sequencing (NGS) technologies have enabled the tracking of drug-resistant malaria parasites.
Methods: In this study, we used Targeted Amplicon Deep Sequencing (TADS) to characterise the genetic diversity of the Pfk13, Pfdhfr, Pfdhps, and Pfmdr1 genes among primary school-going children in 15 counties in Kenya (Bungoma, Busia, Homa Bay, Migori, Kakamega, Kilifi, Kirinyaga, Kisii, Kisumu, Kwale, Siaya, Tana River, Turkana, Vihiga and West Pokot).
ACS Sens
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MDMaastricht, The Netherlands.
Malaria is a major public healthcare concern worldwide, representing a leading cause of death in specific regions. The gold standard for diagnosis is microscopic analysis, but this requires a laboratory setting, trained staff, and infrastructure and is therefore typically slow and dependent on the experience of the technician. This study introduces, for the first time, a biomimetic sensing platform for the direct detection of the disease.
View Article and Find Full Text PDFElife
January 2025
Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands.
Circulating sexual stages of ) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gametes and gametocyte extracts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!