Background: The black yeast Hortaea werneckii (Dothideomycetes, Ascomycota) is one of the most extremely halotolerant fungi, capable of growth at NaCl concentrations close to saturation. Although dothideomycetous fungi are typically haploid, the reference H. werneckii strain has a diploid genome consisting of two subgenomes with a high level of heterozygosity.
Results: In order to explain the origin of the H. werneckii diploid genome we here report the genome sequencing of eleven strains isolated from different habitats and geographic locations. Comparison of nine diploid and two haploid strains showed that the reference genome was likely formed by hybridization between two haploids and not by endoreduplication as suggested previously. Results also support additional hybridization events in the evolutionary history of investigated strains, however exchange of genetic material in the species otherwise appears to be rare. Possible links between such unusual reproduction and the extremotolerance of H. werneckii remain to be investigated.
Conclusions: H. werneckii appears to be able to form persistent haploid as well as diploid strains, is capable of occasional hybridization between relatively heterozygous haploids, but is otherwise limited to clonal reproduction. The reported data and the first identification of haploid H. werneckii strains establish this species as a good model for studying the effects of ploidy and hybridization in an extremotolerant system unperturbed by frequent genetic recombination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5952469 | PMC |
http://dx.doi.org/10.1186/s12864-018-4751-5 | DOI Listing |
Curr Microbiol
December 2024
Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, 10520, Thailand.
Lignocellulolytic enzymes isolation from mangrove-derived organisms has many industrial advantages due to their efficiency in dealing with extreme and challenging conditions, such as high temperatures and salt concentrations. This study aimed to isolate fungal enzyme producers from mangrove soil in Thailand to produce lignocellulolytic enzymes (carboxymethyl cellulase: CMCase, xylanase, and laccase) and to characterize these enzymes to support industrial applications. Forty-eight fungi were isolated from the mangrove samples, and their enzyme-producing capabilities were assessed using primary and secondary screening methods.
View Article and Find Full Text PDFMicroorganisms
September 2024
Faculty of Natural Sciences, Vytautas Magnus University, 53361 Kaunas, Lithuania.
and are the only two vascular plants colonized on the Antarctic continent, which is usually exposed to extreme environments. Endophytic bacteria residing within plant tissues can exhibit diverse adaptations that contribute to their ecological success and potential benefits for their plant hosts. This study aimed to characterize 12 endophytic bacterial strains isolated from these plants, focusing on their ecological adaptations and functional roles like plant growth promotion, antifungal activities, tolerance to salt and low-carbon environments, wide temperature range, and biofilm formation.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2024
Faculty of Geology, University of Warsaw, Warsaw, Poland.
Extreme environments, such as highly saline ecosystems, are characterised by a limited presence of microbial communities capable of tolerating and thriving under these conditions. To better understand the limits of life and its chemical and microbiological drivers, highly saline and brine groundwaters of Na-Cl and Na-Ca-Cl types with notably diverse SO contents were sampled in water intakes and springs from sedimentary aquifers located in the Outer Carpathians and the Carpathian Foredeep basin and its basement in Poland. Chemical and microbiological methods were used to identify the composition of groundwaters, determine microbial diversity, and indicate processes controlling their distribution using multivariate statistical analyses.
View Article and Find Full Text PDFBMC Biol
October 2024
Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China.
Background: As a potential model organism for studies of environmental and cell biology, Paramecium duboscqui is a special euryhaline species of Paramecium that can be found in fresh, brackish, or marine water in natural salinity ranges between 0‰ and 33‰. However, the genome information as well as molecular mechanisms that account for its remarkable halotolerant traits remain extremely unknown. To characterize its genome feature, we combined PacBio and Illumina sequencing to assemble the first high-quality and near-complete macronuclear genome of P.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA, USA, 90095, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!