Stimulation of α2-adrenoceptor/I1-imidazoline receptors in the rostral ventrolateral medulla decreases the blood pressure via sympathoinhibition. However, alteration of receptor responses in genetically hypertensive rats remains unclear. We examined cardiovascular responses of α2-adrenoceptor/I1-imidazoline receptor agonist and antagonists microinjected into the rostral ventrolateral medulla of conscious spontaneously hypertensive rats and normotensive Wistar Kyoto rats. Injection of 2-nmol clonidine-an α2-adrenoceptor/I1-imidazoline receptor agonist-unilaterally into the rostral ventrolateral medulla decreased the blood pressure, heart rate, and renal sympathetic nerve activity; the responses were significantly enhanced in spontaneously hypertensive rats than in Wistar Kyoto rats. Co-injection of 2-nmol 2-methoxyidazoxan (a selective α2-adrenoceptor antagonist) or 2-nmol efaroxan (an I1-receptor antagonist) with 2 nmol of clonidine attenuated the hypotensive and bradycardic effects of clonidine-only injection. Injection of 2-methoxyidazoxan alone increased the blood pressure and heart rate in spontaneously hypertensive rats, but not in Wistar Kyoto rats. These results suggest enhanced responsiveness of α2-adrenoceptor/I1-imidazoline receptors in the rostral ventrolateral medulla of spontaneously hypertensive rats.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10641963.2018.1469641DOI Listing

Publication Analysis

Top Keywords

rostral ventrolateral
20
ventrolateral medulla
20
spontaneously hypertensive
20
hypertensive rats
20
α2-adrenoceptor/i1-imidazoline receptor
12
blood pressure
12
wistar kyoto
12
kyoto rats
12
responsiveness α2-adrenoceptor/i1-imidazoline
8
conscious spontaneously
8

Similar Publications

The role of the dorsomedial hypothalamus in the cardiogenic sympathetic reflex in the Sprague Dawley rat.

Front Physiol

December 2024

Biomedical Science Department, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.

Myocardial ischemia causes the production and release of metabolites such as bradykinin, which stimulates cardiac spinal sensory afferents, causing chest pain and an increase in sympathetic activity referred to as the cardiogenic sympathetic afferent reflex. While the brain stem nuclei, such as the nucleus tractus solitarius and rostral ventrolateral medulla, are essential in the cardiogenic sympathetic afferent reflex, the role of other supramedullary nuclei in the cardiogenic sympathetic afferent reflex are not clear. The dorsomedial hypothalamic nucleus (DMH) is involved in cardiovascular sympathetic regulation and plays an important role in the sympathetic response to stressful stimuli.

View Article and Find Full Text PDF

Brainstem C1 neurons mediate heart failure decompensation and mortality during acute salt loading.

Cardiovasc Res

December 2024

Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago 8331150, Chile.

Aims: Heart failure (HF) is an emerging epidemic worldwide. Despite advances in treatment, the morbidity and mortality rate of HF remain high, and the global prevalence continues to rise. Common clinical features of HF include cardiac sympathoexcitation, disordered breathing, and kidney dysfunction; kidney dysfunction strongly contributes to sodium retention and fluid overload, leading to poor outcomes of HF patients.

View Article and Find Full Text PDF

Dysfunction in neuro-mesenchymal units impairs the development of bone marrow B cells in mice with anxiety.

Brain Behav Immun

December 2024

Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China. Electronic address:

The reduction in B lymphocytes observed in individuals with anxiety disorders may compromise antiviral responses, yet the precise mechanisms behind this decline remain unclear. While elevated glucocorticoid levels have been suggested as contributing factors, anxiety disorders are associated with diminished glucocorticoid signaling. Given that autonomic nervous system dysfunction is a hallmark of anxiety disorders, we established an anxiety-related behavior mouse model by stimulating C1 neurons in the rostral ventrolateral medulla.

View Article and Find Full Text PDF

The central amygdala (CeA) is a crucial modulator of emotional, behavioral, and autonomic functions, including cardiovascular responses. Despite its importance, the specific circuit by which the CeA modulates blood pressure remains insufficiently explored. Our investigations demonstrate that photostimulation of GABAergic neurons in the centromedial amygdala (CeM), as opposed to those in the centrolateral amygdala (CeL), produces a depressor response in both anesthetized and freely-moving mice.

View Article and Find Full Text PDF

Fos expression in A1/C1 neurons of rats exposed to hypoxia, hypercapnia, or hypercapnic hypoxia.

Neurosci Lett

November 2024

Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan. Electronic address:

The distribution of Fos expression in catecholaminergic neurons with immunoreactivity for dopamine β-hydroxylase (DBH) of the ventrolateral medulla was compared between rats exposed to hypoxia (10 % O), hypercapnia (8 % CO), and hypercapnic hypoxia (8 % CO and 10 % O) for 2 h. Among the experimental groups, hypoxia-exposed rats had more Fos/DBH double-immunoreactive neurons than the control group (20 % O) in the rostral area of the ventrolateral medulla, specifically in the range of + 150 μm to + 2,400 μm from the caudal end of the facial nerve nucleus. On the other hand, Fos/DBH double-immunoreactive neurons were scarcely observed in the ventrolateral medullary region of hypercapnia-exposed rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!