Eremophilane sesquiterpenes from the endophytic fungus Xylaria sp. GDG-102.

Nat Prod Res

a State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences , Guangxi Normal University, Guilin , P.R. China.

Published: May 2019

A new eremophilane sesquiterpene, xylareremophil (1), together with five known eremophilanes, 1α,10α-epoxy-3α-hydroxyeremophil-7(11)-en-12,8β-olide (2), 1,10α,13-trihydroxyeremophil-7(11)-en-12,8-olide (3), 1α,10α-epoxy-13-hydroxyeremophil-7(11)-en-12,8β-olide (4), mairetolides B (5) and G (6) were isolated from the endophytic fungus Xylaria sp. GDG-102 cultured from Sophora tonkinensis. Their structures were elucidated on the basis of spectroscopic data analysis. The absolute configurations of 1 was determined by comparing computed electronic circular dichroism (ECD) and optical rotation (OR) with experimental results. Compounds 1, 5 and 6 showed antibacterial activities against Proteus vulgaris, Micrococcus luteus, Micrococcus lysodeikticus and Bacillus subtilis with MIC values of 25-100 μg/mL.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2018.1472597DOI Listing

Publication Analysis

Top Keywords

endophytic fungus
8
fungus xylaria
8
xylaria gdg-102
8
eremophilane sesquiterpenes
4
sesquiterpenes endophytic
4
gdg-102 eremophilane
4
eremophilane sesquiterpene
4
sesquiterpene xylareremophil
4
xylareremophil eremophilanes
4
eremophilanes 1α10α-epoxy-3α-hydroxyeremophil-711-en-128β-olide
4

Similar Publications

Endophytic fungi possess a unique ability to produce abundant secondary metabolites, which play an active role in the growth and development of host plants. In this study, chemical investigations on the endophytic fungus TE-739D derived from the cultivated tobacco ( L.) afforded two new polyketide derivatives, namely japoniones A () and B (), as well as four previously reported compounds -.

View Article and Find Full Text PDF

Application of Synthetic Microbial Communities of in Enhancing Wheat Salt Stress Tolerance.

Int J Mol Sci

January 2025

Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.

Soil salinization poses a significant challenge to global agriculture, particularly in arid and semi-arid regions like Xinjiang. , a halophytic plant adapted to saline-alkaline conditions, harbors endophytic microorganisms with potential plant growth-promoting properties. In this study, 177 endophytic bacterial strains were isolated from , and 11 key strains were identified through functional screening based on salt tolerance, nutrient solubilization, and growth-promoting traits.

View Article and Find Full Text PDF

Many endophytic fungi are approved as plant growth stimulants, and several commercial biostimulants have already been introduced in agricultural practice. However, there are still many species of fungi whose plant growth-promoting properties have been understudied or not studied at all. We examined the growth-promoting effect in spring barley () and Italian ryegrass () induced by three endophytic fungi previously obtained from the roots of / grasses.

View Article and Find Full Text PDF

Interactions between plants and their endophytes alter their metabolic functions and ability to cope with abiotic stresses. In this study, high-throughput sequencing was used to analyze the species diversity and functions of endophytes in var. (CES) tubers under different heavy metal stress conditions.

View Article and Find Full Text PDF

Objectives: (1) To evaluate the potential of producing huperzine (Hup) and anticholinesterase (AChE) activities of nine native Lycopodiaceae species collected in Vietnam; (2) Isolation, identification and characterization of a novel fungus producing both HupA and HupB isolated from Lycopodium casuarinoides Spring.

Results: All methanolic extracts of nine plants showed AChE inhibition from 8.55 to 71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!