There is lack of researches on effects of intravenously injected mesenchymal stem cells (MSCs) against transient cerebral ischemia (TCI). We investigated the disruption of the neurovascular unit (NVU), which comprises the blood-brain barrier and examined entry of human dermis-derived MSCs (hDMSCs) into the damaged hippocampal CA1 area in a gerbil model of TCI and their subsequent effects on neuroprotection and cognitive function. Impairments of neurons and blood-brain barrier were examined by immunohistochemistry, electron microscopy, and Evans blue and immunoglobulin G leakage. Neuronal death was observed in pyramidal neurons 5-day postischemia. NVU were structurally damaged; in particular, astrocyte end-feet were severely damaged from 2-day post-TCI and immunoglobulin G leaked out of the CA1 area 2 days after 5 min of TCI; however, Evans blue extravasation was not observed. On the basis of the results of NVU damages, ischemic gerbils received PKH2-transfected hDMSCs 3 times at early times (3 hr, 2, and 5 days) after TCI, and fluorescence imaging was used to detect hDMSCs in the tissue. PKH2-transfected hDMSCs were not found in the CA1 from immediate time to 8 days after injection, although they were detected in the liver. Furthermore, hDMSCs transplantation did not protect CA1 pyramidal neurons and did not improve cognitive impairment. Intravenously transplanted hDMSCs did not migrate to the damaged CA1 area induced by TCI. These findings suggest no neuroprotection and cognitive improvement by intravenous hDMSCs transplantation after 5 min of TCI.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.2692DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
12
ca1 area
12
human dermis-derived
8
mesenchymal stem
8
stem cells
8
cerebral ischemia
8
barrier examined
8
neuroprotection cognitive
8
evans blue
8
pyramidal neurons
8

Similar Publications

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority.

View Article and Find Full Text PDF

Cell-cell communications in the brain of hepatic encephalopathy: The neurovascular unit.

Life Sci

January 2025

Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea; Research Institute for Biomedical & Health Science (RIBHS), Konkuk University, Chungju, Republic of Korea. Electronic address:

Many patients with liver diseases are exposed to the risk of hepatic encephalopathy (HE). The incidence of HE in liver patients is high, showing various symptoms ranging from mild symptoms to coma. Liver transplantation is one of the ways to overcome HE.

View Article and Find Full Text PDF

The blood-brain barrier is a physiological barrier that can prevent both small and complex drugs from reaching the brain to exert a pharmacological effect. For treatment of neurological diseases, drug concentrations at the target site are a fundamental parameter for therapeutic effect; thus, the blood-brain barrier is a major obstacle to overcome. Novel strategies have been developed to circumvent the blood-brain barrier, including CSF delivery, intracranial delivery, ultrasound-based methods, membrane transporters, receptor-mediated transcytosis, and nanotherapeutics.

View Article and Find Full Text PDF

Delivery of drugs through the blood-brain barrier: need for trials.

Lancet Neurol

January 2025

Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!