Background/aims: Renal cell carcinoma (RCC) is currently the ninth most common cancer in men. Interleukin (IL)-33 expression has previously been associated with a number of cancers; however, its biological role in RCC is poorly understood. In this study, we sought to elucidate the role of IL-33 in RCC.

Methods: Serum IL-33 levels were measured by ELISA. IL-33 expression in clinical RCC samples was examined by immunocytochemistry. The proliferation and apoptosis rate of RCC were determined by CCK8 and flow cytometry. Mcl1 and Bcl-2 expression were measured by quantitative real-time PCR and western blotting. JNK expression were measured by western blotting and flow cytometry. The in vivo role of IL-33 in RCC tumorigenesis was examined by animal models.

Results: We found that increased expression of IL-33 in RCC was associated with tumor-lymph node-metastasis (TNM) stage and inversely correlated with prognosis. IL-33 enhances RCC cell growth in vivo and stimulates RCC cell proliferation and prevents chemotherapy-induced tumor apoptosis in vitro. Furthermore, we demonstrated that IL-33 promotes RCC cell proliferation and chemotherapy resistance via its receptor ST2 and the JNK signaling activation in tumor cells.

Conclusion: Our findings suggest that targeting IL-33/ST2 and JNK signaling may have potential value in the treatment of RCC.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000489766DOI Listing

Publication Analysis

Top Keywords

jnk signaling
12
rcc cell
12
rcc
10
renal cell
8
cell carcinoma
8
cell growth
8
receptor st2
8
st2 jnk
8
il-33
8
il-33 expression
8

Similar Publications

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Investigation into the Potential Mechanism of Radix Paeoniae Rubra Against Ischemic Stroke Based on Network Pharmacology.

Nutrients

December 2024

Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China.

Background: Radix Paeoniae Rubra (RPR), an edible and medicinal Traditional Chinese Medicine (TCM), is extensively employed in therapeutic interventions of cardiovascular and cerebrovascular diseases. However, the curative effect of RPR on ischemic stroke remains ambiguous. This work integrated network pharmacology, molecular docking, and experimental validation to explore the mechanisms of RPR in treating ischemic stroke.

View Article and Find Full Text PDF

RNA virus-induced excessive inflammation and impaired antiviral interferon (IFN-I) responses are associated with severe disease. This innate immune response, also referred to as "dysregulated immunity" is caused by viral single-stranded RNA (ssRNA)- and double-stranded-RNA (dsRNA)-mediated exuberant inflammation and viral protein-induced IFN antagonism. However, key host factors and the underlying mechanism driving viral RNA-mediated dysregulated immunity are poorly defined.

View Article and Find Full Text PDF

Epstein-Barr virus is highly associated with nasopharyngeal carcinoma (NPC) with genes expressed for tumor transformation or maintenance of viral latency, but there are certain genes that can modulate immune molecules. Butyrophilin 2A1 (BTN2A1) is an important activating protein for presenting phosphoantigens for recognition by Vγ9Vδ2 T cells to achieve antitumor activities. We have previously shown that Vγ9Vδ2 T cells achieve efficacy against NPC when BTN2A1 and BTN3A1 are upregulated by stimulating EBV gene expression, particularly LMP1.

View Article and Find Full Text PDF

The Phenotype Changes of Astrocyte During Different Ischemia Conditions.

Brain Sci

December 2024

Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

Objectives: Dementia is becoming a major health problem in the world, and chronic brain ischemia is an established important risk factor in predisposing this disease. Astrocytes, as one major part of the blood-brain barrier (BBB), are activated during chronic cerebral blood flow hypoperfusion. Reactive astrocytes have been classified into phenotype pro-inflammatory type A1 or neuroprotective type A2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!