Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems.

Bioresour Technol

Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China; Guangdong Dazhong Agriculture Science Co. Ltd., Hongmei Town, Dongguan, Guangdong 523169, China.

Published: September 2018

Pollution of water by single antibiotics has been investigated in depth. However, in reality, a wide range of different contaminants is often mixed in the aquatic environment (contaminant cocktail). Here, single and competitive sorption dynamics of ionizable norfloxacin (NOR), sulfamerazine (SMR) and oxytetracycline (OTC) by both pristine and modified biochars were investigated. Sorption kinetics of the three antibiotics was faster in ternary-solute than single-solute system. Sorption efficiency was enhanced in the competitive system for NOR by the pristine biochar, and for OTC by both the pristine biochar and the modified biochar, while SMR sorption by the pristine biochar and the KOH-modified biochar was inhibited. Sorption was governed by electrostatic interactions, π-π EDA and H-bonds for antibiotics sorption by biochar. SMR and OTC sorption by biochar was influenced by cation bridging and surface complexation, respectively. This research finding will guide the development of treatment procedures for water polluted by multiple antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.05.022DOI Listing

Publication Analysis

Top Keywords

pristine biochar
12
sorption
8
norfloxacin sulfamerazine
8
biochar
8
koh-modified biochar
8
otc pristine
8
biochar smr
8
sorption biochar
8
sorption norfloxacin
4
sulfamerazine oxytetracycline
4

Similar Publications

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

Sulfur-functionalized sawdust biochar for enhanced cadmium adsorption and environmental remediation: A multidisciplinary approach and density functional theory insights.

J Environ Manage

December 2024

School of Chemistry and Chemical Engineering, David Keir Building, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK. Electronic address:

Pristine biochar typically exhibits limited capacity for heavy metal adsorption due to its inadequate pore development and insufficient surface functionality. This study introduces an innovative chemical strategy to enhance the surface of sawdust biochar with sulfur-based functional groups (C=S, C-S, S-S, S, S-H, -SO, -SO) to significantly improve cadmium (Cd) adsorption. Sulfur-doping using HSO, NaS, and NaSO markedly increased the sulfur content from 0.

View Article and Find Full Text PDF

The occurrence of excessive levels of bivalent plumbum (Pb(II)) in wastewater poses a notable threat to both human health and ecological safety. In this study, orthogonal experiments were conducted to prepare coprecipitation-modified biochar (C-BC) and impregnation pyrolysis-modified biochar (I-BC) via potassium permanganate (KMnO) for removing Pb(II) from wastewater. Three types of modified biochars (BCs) (Mn-BCs) namely, C-BC, I-BC, and I-BC, were selected as high-efficiency adsorbents on the basis of their high removal rates (87.

View Article and Find Full Text PDF

Green synthesized nanoscale zero-valent iron impregnated tea residue biochar efficiently captures metal(loid)s for sustainable water remediation.

J Environ Manage

December 2024

Korea Biochar Research Center, Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Korea.

Pristine or modified nanoscale zero-valent iron (nZVI) synthesized though conventional chemical reduction have been widely recommended for remediating metal(loid)-contaminated water. However, their eco-friendliness is often challenged with the concomitant bio-toxicity and secondary environmental risks. Alternatively, this study utilized waste tea leaves extract and remaining residue as the reducing agent and pyrolytic matrix to innovatively fabricate a green synthesized nZVI impregnated tea residue biochar (G-nZVI/TB).

View Article and Find Full Text PDF

Biomass-derived biochar has enormous potential for sustainable and low-cost treatment of lead-contained wastewater. In this study, corncob and cow dung-derived biochar were prepared. The increase in pyrolysis temperature could improve the porous structures, surface area, functional groups and alkalinity, and further provide a higher Pb capacity in both biochars.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!