Despite the great diversity of plant growth-promoting bacteria (PGPB) with potential to partially replace the use of N fertilisers in agriculture, few PGPB have been explored for the production of commercial inoculants, reinforcing the importance of identifying positive plant-bacteria interactions. Aiming to better understand the influence of PGPB inoculation in plant development, two PGPB species with distant phylogenetic relationship were inoculated in maize. Maize seeds were inoculated with Bacillus sp. or Azospirillum brasilense. After germination, the plants were subjected to two N treatments: full (N+) and limiting (N-) N supply. Then, anatomical, biometric and physiological analyses were performed. Both PGPB species modified the anatomical pattern of roots, as verified by the higher metaxylem vessel element (MVE) number. Bacillus sp. also increased the MVE area in maize roots. Under N+ conditions, both PGPB decreased leaf protein content and led to development of shorter roots; however, Bacillus sp. increased root and shoot dry weight, whereas A. brasilense increased photosynthesis rate and leaf nitrate content. In plants subjected to N limitation (N-), photosynthesis rate and photosystem II efficiency increased in maize inoculated with Bacillus sp., whilst A. brasilense contained higher ammonium, amino acids and total soluble sugars in leaves, compared to the control. Plant developmental and metabolical patterns were switched by the inoculation, regardless of the inoculant bacterium used, producing similar as well as distinct modifications to the parameters studied. These results indicate that even non-diazotrophic inoculant strains can improve the plant N status as result of the morpho-anatomical and physiological modifications produced by the PGPB.

Download full-text PDF

Source
http://dx.doi.org/10.1111/plb.12841DOI Listing

Publication Analysis

Top Keywords

pgpb species
8
inoculated bacillus
8
plants subjected
8
bacillus increased
8
photosynthesis rate
8
pgpb
7
maize
5
associative bacteria
4
bacteria influence
4
influence maize
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!