A binary phase diffractive optical element photon sieve is fabricated by direct laser ablation of a thin, flexible polyimide substrate with a nanosecond-pulsed ultraviolet laser. The binary phase photon sieve operates at 633 nm and was designed with 19 rings and a focal length of 400 mm. The total time to fabricate the photon sieves was tens of seconds. The surface properties of the laser-processed areas are examined, and the optical performance of the photon sieve is characterized and compared to FDTD simulations. By optimizing the laser fluence and travel distance between laser pulses, features with sub-wavelength surface roughness were achieved. The photon sieve showed good focusing ability with suppressed side-lobes. When the fractional area of photon sieve pinholes was made to approach 50%, the binary sieve diffraction efficiency approached 11%, matching the highest value reported in the literature for a photon sieve. Thus, this Letter demonstrates both high efficiency and lightweight diffractive optics suitable for space satellite and other applications, with capabilities for low cost and high throughput fabrication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631319PMC
http://dx.doi.org/10.1364/OL.43.002368DOI Listing

Publication Analysis

Top Keywords

photon sieve
24
binary phase
12
photon
8
phase photon
8
photon sieves
8
laser ablation
8
sieve
7
laser
5
flexible binary
4
sieves polyimide
4

Similar Publications

Structured beams carrying orbital angular momentum (OAM) provide powerful capabilities for applications in optical tweezers, super-resolution imaging, quantum optics, and ad-vanced microparticle manipulation. However, it is challenging for generate and control the OAM beams at the extreme ultraviolet (EUV) region due to the lack of suitable wave front shaping optics arise from being limited to the strong absorption of most materials. Here, we use a modified Fermat-spiral photon-sieve splitter to simultaneously generate two focused doughnut beams with opposite helical phase.

View Article and Find Full Text PDF

Micromorphological and phytochemical studies play a major role in quality control and standardization of traditional or herbal medications. In the present research, micromorphological assessment of Heliotropium rarifloum stocks was performed through light and scanning electron microscopies (LM & SEM). The anatomy of leaves, stem and root showed salient histological features.

View Article and Find Full Text PDF

Controlling gas admission by regulating pore accessibility in porous materials has been a topic of extensive research. Recently, the electric field (E-field) has emerged as an external stimulus to alter the adsorption behavior of some microporous adsorbents. However, the mechanism behind this phenomenon is not yet fully understood.

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) are crucial in the development of lithium metal batteries. Recently, metal-organic frameworks (MOFs) with open metal sites (OMSs) have shown promise as solid fillers to improve the performance of SPEs. However, the number of OMS-containing MOFs is quite limited, comprising less than 5% of the total MOFs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!