Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Delay-and-sum beamforming (DSB) of photoacoustic data does not incorporate a priori spatial sparsity of the imaging target. By incorporating this information into beamforming for limited-view photoacoustic computed tomography, we experimentally obtained enhanced resolution images of wires at a depth of 8.5 mm in a tissue mimicking scattering medium. Using a 21 MHz transducer, we improved the resolution from the 200 to 250 μm achieved by DSB to 75 μm. The sparsity-based technique also generated a cleaner image with a background signal level of roughly -50 dB, much lower than the roughly -18 dB background signal level of DSB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.43.002221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!