A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Remote Sensing of Wildland Fire-Induced Risk Assessment at the Community Level. | LitMetric

Remote Sensing of Wildland Fire-Induced Risk Assessment at the Community Level.

Sensors (Basel)

Department of Geomatics Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.

Published: May 2018

Wildland fires are some of the critical natural hazards that pose a significant threat to the communities located in the vicinity of forested/vegetated areas. In this paper, our overall objective was to study the structural damages due to the 2016 Horse River Fire (HRF) that happened in Fort McMurray (Alberta, Canada) by employing primarily very high spatial resolution optical satellite data, i.e., WorldView-2. Thus, our activities included the: (i) estimation of the structural damages; and (ii) delineation of the wildland-urban interface (WUI) and its associated buffers at certain intervals, and their utilization in assessing potential risks. Our proposed method of remote sensing-based estimates of the number of structural damages was compared with the ground-based information available from the Planning and Development Recovery Committee Task Force of Regional Municipality of Wood Buffalo (RMWB); and found a strong linear relationship (i.e., r² value of 0.97 with a slope of 0.97). Upon delineating the WUI and its associated buffer zones at 10 m, 30 m, 50 m, 70 m and 100 m distances; we found existence of vegetation within the 30 m buffers from the WUI for all of the damaged structures. In addition, we noticed that the relevant authorities had removed vegetation in some areas between 30 m and 70 m buffers from the WUI, which was proven to be effective in order to protect the structures in the adjacent communities. Furthermore, we mapped the wildland fire-induced vulnerable areas upon considering the WUI and its associated buffers. Our analysis revealed that approximately 30% of the areas within the buffer zones of 10 m and 30 m were vulnerable due to the presence of vegetation; in which, approximately 7% were burned during the 2016 HRF event that led the structural damages. Consequently, we suggest to remove the existing vegetation within these critical zones and also monitor the region at a regular interval in order to reduce the wildland fire-induced risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981306PMC
http://dx.doi.org/10.3390/s18051570DOI Listing

Publication Analysis

Top Keywords

structural damages
16
wildland fire-induced
12
wui associated
12
fire-induced risk
8
associated buffers
8
buffer zones
8
buffers wui
8
wui
5
remote sensing
4
wildland
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!