Polyphyllin VI, which is an active saponin, is mainly isolated from traditional medicinal plant , which causes liver damage in rats. In the present study, we aimed to explore the potential cytotoxicity of polyphyllin VI on the growth of HepaRG cells and to determine the molecular mechanism. The results revealed that polyphyllin VI changed cell morphology and induced apoptosis in HepaRG cells. Flow cytometric assay displayed that polyphyllin VI promoted the generation of reactive oxygen species (ROS), depolarized the mitochondrial membrane potential (MMP), and induced S phase cell cycle arrest by decreasing the expression of cyclin A2 and CDK2, while significantly increasing the expression of p21 protein. Polyphyllin VI induced the release of cytochrome c from the mitochondria to the cytosol and activated Fas, caspase-3, -8, -9, and PARP proteins. Pretreatment with NAC and Z-VAD-FMK (ROS scavenger and caspase inhibitor, respectively) on HepaRG cells increased the percentage of viable cells, which indicated that polyphyllin VI induced cell apoptosis through mitochondrial pathway by the generation of ROS and Fas death-dependent pathway. All of the effects are in dose- and time-dependent manners. Taken together, these findings emphasize the necessity of risk assessment to polyphyllin VI and offer an insight into polyphyllin VI-induced apoptosis of HepaRG cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983257 | PMC |
http://dx.doi.org/10.3390/toxins10050201 | DOI Listing |
Toxics
November 2024
The Julius L. Chambers Biomedical/Biotechnology Research Institute (JLC-BBRI), North Carolina Central University (NCCU), Durham, NC 27707, USA.
Crude oil naphtha fraction C9 alkylbenzenes consist of trimethylbenzenes, ethyltoluenes, cumene, and n-propylbenzene. The major fraction of C9 alkylbenzenes is ethyltoluenes (ETs) consisting of three isomers: 2-ethyltoluene (2-ET), 3-ethyltoluene (3-ET), and 4-ethyltoluene (4-ET). Occupational and environmental exposure to ETs can occur via inhalation and ingestion and cause several health problems.
View Article and Find Full Text PDFArch Toxicol
December 2024
Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance.
View Article and Find Full Text PDFMicrobes Infect
December 2024
Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Virology, Helmholtz Zentrum München, Munich, Germany. Electronic address:
Human endogenous retroviruses (HERVs), which are normally silenced by methylation or mutation, can be reactivated by a variety of environmental factors, including infection with exogenous viruses. In this work, we investigated the transcriptional activity of HERVs following infection of human liver cells (HepaRG) with human adenovirus C serotype 5 (HAdV-C5). HAdV-C5 infection results in reactivation of several HERV groups as well as differentially expressed genes.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada.
L-arginine: glycine amidinotransferase (AGAT) gained academic interest as the rate-limiting enzyme in creatine biosynthesis and its role in the regulation of creatine homeostasis. Of clinical relevance is the diagnosis of patients with AGAT deficiency but also the potential role of AGAT as therapeutic target for the treatment of another creatine deficiency syndrome, guanidinoacetate N-methyltransferase (GAMT) deficiency. Applying a stable isotope-labeled substrate method, we utilized ARG 15N (ARG-δ2) and GLY 13C15N (GLY-δ3) to determine the rate of 1,2-13C,15N guanidinoacetate (GAA-δ5) formation to assess AGAT activity in various mouse tissue samples and human-derived cells.
View Article and Find Full Text PDFNutrients
December 2024
Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!