Phenotypes of individuals in a population of organisms are not fixed. Phenotypic fluctuations, which describe temporal variation of the phenotype of an individual or individual-to-individual variation across a population, are present in populations from microbes to higher animals. Phenotypic fluctuations can provide a basis for adaptation and be the target of selection. Here we present a theoretical and experimental investigation of the fate of phenotypic fluctuations in directed evolution experiments where phenotypes are subject to constraints. We show that selecting bacterial populations for fast migration through a porous environment drives a reduction in cell-to-cell variation across the population. Using sequencing and genetic engineering we study the genetic basis for this reduction in phenotypic fluctuations. We study the generality of this reduction by developing a simple, abstracted, numerical simulation model of the evolution of phenotypic fluctuations subject to constraints. Using this model we find that strong and weak selection generally lead respectively to increasing or decreasing cell-to-cell variation as a result of a bound on the selected phenotype under a wide range of parameters. However, other behaviors are also possible, and we describe the outcome of selection simulations for different model parameters and suggest future experiments. We analyze the mechanism of the observed reduction of phenotypic fluctuations in our experimental system, discuss the relevance of our abstract model to the experiment and explore its broader implications for evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1478-3975/aac4e6 | DOI Listing |
Sci Rep
January 2025
Aquatic Ecology, Department of Biology, Lund University, Lund, Sweden.
Environmental variation has long been considered a key driver of evolutionary change, predicted to shape different strategies, such as genetic specialization, plasticity, or bet-hedging to maintain fitness. However, little evidence is available with regards to how the periodicity of stressors may impact fitness across generations. To address this gap, I conducted a reciprocal split-brood experiment using the freshwater crustacean, Daphnia magna, and an ecologically relevant environmental stressor, ultraviolet radiation (UVR).
View Article and Find Full Text PDFDiabetol Int
January 2025
Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603 Japan.
Type 2 diabetes (T2D) is a polygenic disease, and the development of animal models by selective breeding is crucial for understanding its etiology, pathophysiology, complications, and treatments. We recently developed a new T2D model, the Oikawa-Nagao (ON) mouse, by selectively breeding mice with inferior glucose tolerance [diabetes-prone (ON mouse DP®; ON-DP) strain] and superior glucose tolerance [diabetes-resistant (ON mouse DR®; ON-DR) strain] on a high-fat diet. ON-DP mice are predisposed to develop diabetes and obesity after being fed a high-fat diet, compared to ON-DR mice.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA.
Bacteria encounter chemically similar nutrients in their environment, which impact their growth in distinct ways. Among such nutrients are cobamides, the structurally diverse family of cofactors related to vitamin B (cobalamin), which function as cofactors for diverse metabolic processes. Given that different environments contain varying abundances of different cobamides, bacteria are likely to encounter cobamides that enable them to grow robustly and also those that do not function efficiently for their metabolism.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
In nature, environmental conditions strongly fluctuate, frequently subjecting plants to periods of immediate photo-oxidative stress. The small molecule ascorbate allows plants to cope with such stress conditions. Ascorbate scavenges reactive oxygen species and enables the rapid and full induction of photoprotective non-photochemical quenching (NPQ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!