AI Article Synopsis

  • Nucleic acid amplification tests (NAATs) are highly accurate for diagnosing infectious diseases but typically require complex setups that limit their use in resource-poor areas.
  • The authors present a new rapid point-of-care (POC) NAAT that integrates sample preparation and amplification without the need for advanced equipment, using paper-based technology.
  • This innovative method can quickly detect low levels of nucleic acids in serum and whole blood, providing results in under 20 minutes and making it suitable for immediate patient care in low-resource environments.

Article Abstract

Nucleic acid amplification tests (NAATs) provide high diagnostic accuracy for infectious diseases and quantitative results for monitoring viral infections. The majority of NAATs require complex equipment, cold chain dependent reagents, and skilled technicians to perform the tests. This largely confines NAATs to centralized laboratories and can significantly delay appropriate patient care. Low-cost, point-of-care (POC) NAATs are especially needed in low-resource settings to provide patients with diagnosis and treatment planning in a single visit to improve patient care. In this work, we present a rapid POC NAAT with integrated sample preparation and amplification using electrokinetics and paper substrates. We use simultaneous isotachophoresis (ITP) and recombinase polymerase amplification (RPA) to rapidly extract, amplify, and detect target nucleic acids from serum and whole blood in a paper-based format. We demonstrate simultaneous ITP and RPA can consistently detect 5 copies per reaction in buffer and 10 000 copies per milliliter of human serum with no intermediate user steps. We also show preliminary extraction and amplification of DNA from whole blood samples. Our test is rapid (results in less than 20 min) and made from low-cost materials, indicating its potential for detecting infectious diseases and monitoring viral infections at the POC in low resource settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504979PMC
http://dx.doi.org/10.1021/acs.analchem.8b00185DOI Listing

Publication Analysis

Top Keywords

nucleic acid
8
extraction amplification
8
infectious diseases
8
monitoring viral
8
viral infections
8
patient care
8
amplification
5
semiquantitative nucleic
4
acid test
4
test simultaneous
4

Similar Publications

Background: This is a multicentre, European, prospective trial evaluating the diagnostic accuracy of One Step Nucleic Acid Amplification (OSNA) compared to sentinel lymph nodes histopathological ultrastaging in endometrial cancer patients.

Methods: Centres with expertise in sentinel lymph node mapping in endometrial cancer patients in Europe will be invited to participate in the study. Participating units will be trained on the correct usage of the OSNA RD-210 analyser and nucleic acid amplification reagent kit LYNOAMP CK19 E for rapid detection of metastatic nodal involvement, based on the cytokeratin 19 (CK19) mRNA detection.

View Article and Find Full Text PDF

The analysis of circulating tumour DNA (ctDNA) through minimally invasive liquid biopsies is promising for early multi-cancer detection and monitoring minimal residual disease. Most existing methods focus on targeted deep sequencing, but few integrate multiple data modalities. Here, we develop a methodology for ctDNA detection using deep (80x) whole-genome TET-Assisted Pyridine Borane Sequencing (TAPS), a less destructive approach than bisulphite sequencing, which permits the simultaneous analysis of genomic and methylomic data.

View Article and Find Full Text PDF

The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic GC repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy.

View Article and Find Full Text PDF

Structural basis of RNA polymerase complexes in African swine fever virus.

Nat Commun

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

African swine fever virus is highly contagious and causes a fatal infectious disease in pigs, resulting in a significant global impact on pork supply. The African swine fever virus RNA polymerase serves as a crucial multifunctional protein complex responsible for genome transcription and regulation. Therefore, it is essential to investigate its structural and functional characteristics for the prevention and control of African swine fever.

View Article and Find Full Text PDF

Human DNA licensing initiates replication fork assembly and DNA replication. This reaction promotes the loading of the hMCM2-7 complex on DNA, which represents the core of the replicative helicase that unwinds DNA during S-phase. Here, we report the reconstitution of human DNA licensing using purified proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!