Using the Candida Genome Database.

Methods Mol Biol

Department of Genetics, Stanford University, Stanford, CA, USA.

Published: January 2019

Studying Candida biology requires access to genomic sequence data in conjunction with experimental information that together provide functional context to genes and proteins, and aid in interpreting newly generated experimental data. The Candida Genome Database (CGD) curates the Candida literature, and integrates functional information about Candida genes and their products with a set of analysis tools that facilitate searching for sets of genes and exploring their biological roles. This chapter describes how the various types of information available at CGD can be searched, retrieved, and analyzed. Starting with the guided tour of the CGD Home page and Locus Summary page, this unit shows how to navigate the various assemblies of the C. albicans genome, how to use Gene Ontology tools to make sense of large-scale data, and how to access the microarray data archived at CGD, as well as visualize high-throughput sequencing data through the use of JBrowse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005354PMC
http://dx.doi.org/10.1007/978-1-4939-7737-6_3DOI Listing

Publication Analysis

Top Keywords

candida genome
8
genome database
8
candida
5
data
5
database studying
4
studying candida
4
candida biology
4
biology requires
4
requires access
4
access genomic
4

Similar Publications

The rapid increase in infections caused by the emerging fungal pathogen is of global concern, and understanding its expansion is a priority. The phylogenetic diversity of the yeast is clustered in five major clades, among which clade III is particularly relevant, as most of its strains exhibit resistance to fluconazole, reducing the therapeutic alternatives and provoking outbreaks that are difficult to control. In this study, we have investigated the phylogenetic structure of clade III by analyzing a global collection of 566 genomes.

View Article and Find Full Text PDF

Introduction: Fungi, including , may be a trigger or exacerbate psoriasis, especially in difficult to treat (DTT) areas, through the activation of IL-17/23 axis.

Methods: In this study, seventy patients with DDT psoriasis were enrolled to evaluate species and/or other opportunistic fungi colonization rate at baseline (T0) and the impact of apremilast on fungal load, clinical outcome, serum cytokine levels and biochemical serum profile of patients after 16, 24 and 52 weeks of treatment.

Results: In our population, 33 (47%) patients were colonized by spp.

View Article and Find Full Text PDF

Full Circle: When HSFs bring the heat-mapping the transcriptional circuitries of HSF-type regulators in .

mSphere

December 2024

Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis, Tunisia.

Heat shock factor (HSF)-type regulators are stress-responsive transcription factors widely distributed among eukaryotes, including fungi. They carry a four-stranded winged helix-turn-helix DNA-binding domain considered as the signature domain for HSFs. The genome of the opportunistic yeast encodes four HSF members, namely, Sfl1, Sfl2, Skn7, and the essential regulator, Hsf1.

View Article and Find Full Text PDF

Aims: Glutamate wastewater poses a great environmental challenge to the monosodium glutamate production industry. However, its treatment solution is rich in crude protein, which has the potential to be developed as a new protein source for animal feed.

Methods And Results: Given that the fermentation process generates functionally different metabolites, this study innovatively utilized two strains of feed microorganisms, Aspergillus niger and Candida tropicalis, to perform solid-state fermentation of glutamate wastewater treatment solution.

View Article and Find Full Text PDF

Background: The ongoing emergence and spread of drug-resistant pathogens necessitate urgent solutions. Natural products from bacterial sources are recognized as a promising source of antibiotics. This study aimed to isolate and characterize soil microorganisms from extremely hot environments and to screen their secondary metabolites for antibacterial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!