Complementary methods to observe frustrated phagocytosis and phagosome closure using total internal reflection fluorescence microscopy (TIRFM) are described here. Frustrated phagocytosis occurs when phagocytic cells are exposed to an opsonized surface and spread as if trying to engulf it, allowing for the observation of phagocytic spreading and the biochemical events that directly precede it. Phagosome formation and closure is an inherently three-dimensional process though, and cannot be studied in the "frustrated" situation. Here we describe a method to visualize with unprecedented high-resolution phagosome formation and closure in three dimensions. It allows for observation of the base of the phagocytic cup, the extending pseudopods, as well as the precise site of phagosome scission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7837-3_16 | DOI Listing |
J Mater Chem B
December 2024
Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China.
Chemotherapy-induced immunologic cell death is haunted by the non-specific distribution of chemotherapeutic drugs and insignificant immune activation effects, which render efforts to inhibit the distant metastasis of tumors frustrated. Given the pivotal role that lymph nodes play in tumor metastasis, it is of vital importance whether the drug delivery to tumor-draining lymph nodes (TDLNs) succeeds. In the current study, we developed a doxorubicin-albumin complex (DOX-HSA) solution with the specific ability to simultaneously target the primary tumor and the TDLNs.
View Article and Find Full Text PDFNat Cell Biol
September 2024
Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
Ferroptosis is a distinct form of necrotic cell death caused by overwhelming lipid peroxidation, and emerging evidence indicates a major contribution to organ damage in multiple pathologies. However, ferroptosis has not yet been visualized in vivo due to a lack of specific probes, which has severely limited the study of how the immune system interacts with ferroptotic cells and how this process contributes to inflammation. Consequently, whether ferroptosis has a physiological role has remained a key outstanding question.
View Article and Find Full Text PDFNat Nanotechnol
April 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China.
Exposure to widely used inert fibrous nanomaterials (for example, glass fibres or carbon nanotubes) may result in asbestos-like lung pathologies, becoming an important environmental and health concern. However, the origin of the pathogenesis of such fibres has not yet been clearly established. Here we report an electrochemical nanosensor that is used to monitor and quantitatively characterize the flux and dynamics of reactive species release during the frustrated phagocytosis of glass nanofibres by single macrophages.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2024
Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, P. R. China.
Host immune systems serving as crucial defense lines are vital resisting mechanisms against biofilm-associated implant infections. Nevertheless, biofilms hinder the penetration of anti-bacterial species, inhibit phagocytosis of immune cells, and frustrate host inflammatory responses, ultimately resulting in the weakness of the host immune system for biofilm elimination. Herein, a cell-like construct is developed through encapsulation of erythrocyte membrane fragments on the surface of Fe O nanoparticle-fabricated microbubbles and then loaded with hydroxyurea (EMB-Hu).
View Article and Find Full Text PDFInt J Mol Sci
November 2023
Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
Despite advancements in our knowledge of neutrophil responses to planktonic bacteria during acute inflammation, much remains to be elucidated on how neutrophils deal with bacterial biofilms in implant infections. Further complexity transpires from the emerging findings on the role that biomaterials play in conditioning bacterial adhesion, the variety of biofilm matrices, and the insidious measures that biofilm bacteria devise against neutrophils. Thus, grasping the entirety of neutrophil-biofilm interactions occurring in periprosthetic tissues is a difficult goal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!