We experimentally study the fluid convection inside a condensing droplet of aqueous NaCl solution and compare it with that of an evaporating droplet. The droplets are sandwiched between two horizontal hydrophobic surfaces and surrounded by a reservoir with solution of different concentration. Condensation and evaporation of the droplets occur due to the vapor pressure difference between the droplet and the reservoir solution. The micro-PIV technique has been used to study the velocity field inside the droplets. Buoyancy driven Rayleigh convection is observed inside both the condensing and evaporating droplets. In the condensing droplet, water condenses on the liquid-air interface creating a low density region near the interface. There is upward movement of fluid along the condensing interface towards the top region of the droplet which recirculates back from the center region of the droplet in the downward direction. In contrast, the fluid moves in the downward direction along the interface in the case of an evaporating droplet with an upward plume like flow at the center region of the droplet. Both evaporating and condensing droplets show a recirculating loop inside the droplets of opposite direction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm00205cDOI Listing

Publication Analysis

Top Keywords

inside condensing
12
region droplet
12
convection inside
8
condensing evaporating
8
evaporating droplets
8
droplet
8
condensing droplet
8
evaporating droplet
8
reservoir solution
8
inside droplets
8

Similar Publications

We developed a unique water droplet templating method to fabricate polymer films with three-dimensionally ordered porous structures. This technique is based on a polymer/solvent/HO ternary system, and the key is to choose a volatile and hydrophobic solvent that is slightly miscible with HO. With the fast evaporation of the solvent, water droplets separate from the casting solution and condense from the air to act as pore templates inside the film and on the surface, respectively.

View Article and Find Full Text PDF

In this article, the compressor performance in wet compression conditions is compared with that of dry compression. Wet condensation has been done through droplets with one-micron diameter and a three percent mass flow rate. The flow inside the compressor is steady and three-dimensional, using the software ANSYS CFX has been simulated.

View Article and Find Full Text PDF

Steam injection, especially in a superheated state, increases the rate of heat transfer and improves the quality of the baked products. In this research, different baking methods (forced convention, superheated steam, and superheated steam-assisted) at different temperatures (140°C, 160°C, 180°C) were applied to produce a new formulated rice cake containing acorn flour and inulin. The findings revealed that the level of moisture inside the oven directly influences the volume of the cake.

View Article and Find Full Text PDF

Beyond equilibrium: roles of RNAs in condensate control.

Curr Opin Genet Dev

January 2025

MCD, Center for Integrative Biology (CBI), University of Toulouse, CNRS, Toulouse, France. Electronic address:

Membraneless subcompartments organize various activities in the cell nucleus. Some of them are formed through phase separation that is driven by the polymeric and multivalent nature of biomolecules. Here, we discuss the role of RNAs in regulating nuclear subcompartments.

View Article and Find Full Text PDF

Accumulation of autophagosomes in aging human photoreceptor cell synapses.

Exp Eye Res

January 2025

Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India. Electronic address:

Autophagy is common in the aging retinal pigment epithelium (RPE). A dysfunctional autophagy in aged RPE is implicated in the pathogenesis of age-related macular degeneration. Aging human retina accompanies degenerative changes in photoreceptor mitochondria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!