The mechanisms by which the liver fails in end-stage liver disease remain elusive. Disruption of the transcription factor network in hepatocytes has been suggested to mediate terminal liver failure in animals. However, this hypothesis remains unexplored in human subjects. To study the relevance of transcription factor expression in terminal stages of chronic liver failure in humans, we analyzed the expression of liver-enriched transcription factors (LETFs) hepatocyte nuclear factor (HNF)4α, HNF1α, forkhead box protein A2 (FOXA2), CCAAT/enhancer-binding protein (CEBP)α, and CEBPβ. We then selected downstream genes responsible for some hepatic functions (ornithine transcarbamylase [OTC], cytochrome P450 3A4 [CYP3A4], coagulation factor VII [F7], cadherin 1 [CDH1], phospho-ezrin (Thr567)/radixin (Thr564)/moesin (Thr558) [p-ERM], phospho-myosin light chain [p-MLC], low-density lipoprotein receptor-related protein 1 [LRP1]) in liver tissue from patients at different stages of decompensated liver function based upon Child-Pugh classification, Model for End-Stage Liver Disease score, and degree of inflammatory activity/fibrosis. We first examined differential expression of LETF and determined whether a relationship exists between transcript and protein expression, and liver function. We found HNF4α expression was down-regulated and correlated well with the extent of liver dysfunction ( 0.001), stage of fibrosis ( 0.0005), and serum levels of total bilirubin ( 0.009; 0.35), albumin ( < 0.001; 0.52), and prothrombin time activity ( 0.002; 0.41). HNF4α expression also correlated with CYP3A4, OTC, and F7 as well as CDH1 RNA levels. The Rho/Rho-associated protein kinase pathways, which have been implicated in the regulation of HNF4α, were also differentially expressed, in concert with LRP1, a reported upstream regulator of RhoA function. HNF4α and other members of the LETFs appear to be important regulators of hepatocyte function in patients with chronic hepatic failure. ( 2018;2:582-594).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944584PMC
http://dx.doi.org/10.1002/hep4.1172DOI Listing

Publication Analysis

Top Keywords

transcription factor
12
liver
9
liver-enriched transcription
8
factor expression
8
chronic hepatic
8
hepatic failure
8
failure humans
8
end-stage liver
8
liver disease
8
liver failure
8

Similar Publications

Altered chromatin landscape and 3D interactions associated with primary constitutional MLH1 epimutations.

Clin Epigenetics

December 2024

Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.

Background: Lynch syndrome (LS), characterised by an increased risk for cancer, is mainly caused by germline pathogenic variants affecting a mismatch repair gene (MLH1, MSH2, MSH6, PMS2). Occasionally, LS may be caused by constitutional MLH1 epimutation (CME) characterised by soma-wide methylation of one allele of the MLH1 promoter. Most of these are "primary" epimutations, arising de novo without any apparent underlying cis-genetic cause, and are reversible between generations.

View Article and Find Full Text PDF

Background: The overall prognosis of patients with esophageal cancer (EC) is extremely poor. There is an urgent need to develop innovative therapeutic strategies. This study will investigate the anti-cancer effects of exosomes loaded with specific anti-cancer microRNAs in vivo and in vitro.

View Article and Find Full Text PDF

Spatial transcriptomics reveals unique metabolic profile and key oncogenic regulators of cervical squamous cell carcinoma.

J Transl Med

December 2024

Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.

Background: As a prevalent and deadly malignant tumor, the treatment outcomes for late-stage patients with cervical squamous cell carcinoma (CSCC) are often suboptimal. Previous studies have shown that tumor progression is closely related with tumor metabolism and microenvironment reshaping, with disruptions in energy metabolism playing a critical role in this process. To delve deeper into the understanding of CSCC development, our research focused on analyzing the tumor microenvironment and metabolic characteristics across different regions of tumor tissue.

View Article and Find Full Text PDF

Variants in the hereditary cancer-associated and genes can alter RNA splicing, producing transcripts that encode internally truncated yet potentially functional proteins. However, few studies have quantitatively analyzed variant-specific splicing isoforms. Here, we investigated cells heterozygous and homozygous for the :c.

View Article and Find Full Text PDF

Cultured human embryonic stem cells (hESCs) can develop genetic anomalies that increase their susceptibility to transformation. In this study, we characterized a variant hESC (vhESC) line and investigated the molecular mechanisms leading to the drift towards a transformed state. Our findings revealed that vhESCs up-regulate EMT-specific markers, accelerate wound healing, exhibit compromised lineage differentiation, and retain pluripotency gene expression in teratomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!