Functional diversity metrics are increasingly used to augment or replace taxonomic diversity metrics to deliver more mechanistic insights into community structure and function. Metrics used to describe landscape structure and characteristics share many of the same limitations as taxonomy-based metrics, particularly their reliance on anthropogenically defined typologies with little consideration of structure, management, or function. However, the development of alternative metrics to describe landscape characteristics has been limited. Here, we extend the functional diversity framework to characterize landscapes based on the diversity of resources available across habitats present. We then examine the influence of resource diversity and provenance on the functional diversities of native and exotic avian communities in New Zealand. Invasive species are increasingly prevalent and considered a global threat to ecosystem function, but the characteristics of and interactions between sympatric native and exotic communities remain unresolved. Understanding their comparative responses to environmental change and the mechanisms underpinning them is of growing importance in predicting community dynamics and changing ecosystem function. We use (i) matrices of resource use (species) and resource availability (habitats) and (ii) occurrence data for 62 native and 25 exotic species and 19 native and 13 exotic habitats in 2015 10 × 10 km quadrats to examine the relationship between native and exotic avian and landscape functional diversity. The numbers of species in, and functional diversities of, native and exotic communities were positively related. Each community displayed evidence of environmental filtering, but it was significantly stronger for exotic species. Less environmental filtering occurred in landscapes providing a more diverse combination of resources, with resource provenance also an influential factor. Landscape functional diversity explained a greater proportion of variance in native and exotic community characteristics than the number of habitat types present. Resource diversity and provenance should be explicitly accounted for when characterizing landscape structure and change as they offer additional mechanistic understanding of the links between environmental filtering and community structure. Manipulating resource diversity through the design and implementation of management actions could prove a powerful tool for the delivery of conservation objectives, be they to protect native species, control exotic species, or maintain ecosystem service provision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938469PMC
http://dx.doi.org/10.1002/ece3.3998DOI Listing

Publication Analysis

Top Keywords

native exotic
32
functional diversity
20
resource diversity
16
exotic species
16
diversity provenance
12
environmental filtering
12
diversity
10
exotic
10
native
9
species
8

Similar Publications

The Role of Pathogens in Plant Invasion: Accumulation of Local Pathogens Hypothesis.

Microb Ecol

January 2025

State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Beijing, China.

In the past decades, dozens of invasion hypotheses have been proposed to elucidate the invasion mechanisms of exotic species. Among them, the accumulation of local pathogens hypothesis (ALPH) posits that invasive plants can accumulate local generalist pathogens that have more negative effect on native species than on themselves; as a result, invasive plants might gain competitive advantages that eventually lead to their invasion success. However, research on this topic is still quite insufficient.

View Article and Find Full Text PDF

Biological invasions occur when organisms are moved from their native range and introduced into new areas, where they can spread and become a potential risk for native organisms. Invasive species are well recorded for vertebrates, plants and a number of invertebrates. A taxa for which there is a lack of information in some countries are arachnids, and this is the case of reports on introduced species in Panama.

View Article and Find Full Text PDF

Yellow Pitahaya ( Haw.): The Less Known of the Pitahayas.

Foods

January 2025

Deparement of Applied Biology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain.

Pitahaya or dragon fruit is an exotic fruit native to Mesoamerica and is cultivated in several regions of the world. In recent years, pitahaya has become increasingly in demand, firstly, for its good nutritional and organoleptic qualities and, secondly, for its richness in antioxidants and bioactive compounds. Spain has opted for new tropical crops, and among them, pitahaya is one of the most planted in recent years.

View Article and Find Full Text PDF

Wild solitary bees face a host of challenges from the simplification of landscapes and biodiversity loss to invasive species and urbanization. Pollinator researchers and restoration workers thus far gave much attention to increase flower cover to reduce the impact of these anthropogenic pressures. Over 30% of bee species need nonfloral resources such as leaves and resin for their survival and reproduction.

View Article and Find Full Text PDF

A female sterilization method for use in field-based behavioral studies of the invasive Asian longhorned beetle (Anoplophora glabripennis).

J Insect Sci

January 2025

Northern Research Station, U.S. Forest Service, United States Department of Agriculture, Hamden, CT, USA.

Asian longhorned beetle (Anoplophora glabripennis Motschulsky), a wood borer (Coleoptera: Cerambycidae) native to China, has been unintentionally and repeatedly introduced to North American and European landscapes as a stow-away in the wood packing material commonly used in international trade. Asian longhorned beetle causes extensive damage and mortality in multiple deciduous tree species and in response, countries in both North America and Europe have adopted policies of eradication. Models that integrate patterns of Asian longhorned beetle dispersal with records of infested trees are critical in optimizing survey and eradication efforts and tracking eradication progress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!