Cancer is a leading cause of death throughout the world, and cancer therapy remains a big medical challenge in terms of both its therapeutic efficacy and safety. Therefore, to find out a safe anticancer drug has been long goal for oncologist and medical scientists. Among clinically used medicines with no or little toxicity, fenofibrate is a drug of the fibrate class that plays an important role in lowering the levels of serum cholesterol and triglycerides while elevating the levels of high-density lipoproteins. Recently, several studies have implied that fenofibrate may exert anticancer effects a variety of pathways involved in apoptosis, cell-cycle arrest, invasion, and migration. Given the great potential that fenofibrate may have anticancer effects, this review was to investigate all published works which directly or indirectly support the anticancer activity of fenofibrate. These studies provide evidence that fenofibrate exerted antitumor effects in several human cancer cell lines, such as breast, liver, glioma, prostate, pancreas, and lung cancer cell lines. Among these studies some have further confirmed the possibility and efficacy of fenofibrate anticancer in xenograft mouse models. In the last part of this review, we also discuss the potential mechanisms of action of fenofibrate based on the available information. Overall, we may repurpose fenofibrate as an anticancer drug in cancer treatment, which urgently need further and comprehensively investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5950581PMC
http://dx.doi.org/10.7150/jca.24488DOI Listing

Publication Analysis

Top Keywords

fenofibrate anticancer
12
fenofibrate
9
anticancer drug
8
anticancer effects
8
cancer cell
8
cell lines
8
anticancer
7
cancer
5
anticancer properties
4
properties fenofibrate
4

Similar Publications

Background: Neuroinflammatory responses are strongly associated with the pathogenesis of progressive neurodegenerative conditions and mood disorders. Modulating microglial activation is a potential strategy for developing protective treatments for central nervous system (CNS)-related diseases. Fibrates, widely used in clinical practice as cholesterol-lowering medications, exhibit numerous biological activities, such as anticancer and antiinflammatory activities.

View Article and Find Full Text PDF

Cyclophosphamide (CP), although a potent anti-cancer drug, causes cardiotoxicity as a side effect that limits its use. Hence, a specific medicine that can lower cardiotoxicity and be utilised as an adjuvant in cancer treatment is very much needed. In this light, we intended to assess the protective potential of levocabastine (LEV) on CP-induced cardiotoxicity in Swiss albino mice.

View Article and Find Full Text PDF

Inhibition of tumor migration and invasion by fenofibrate via suppressing epithelial-mesenchymal transition in breast cancers.

Toxicol Appl Pharmacol

February 2024

Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 404333, Taiwan; Department of Biochemistry, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung 404333, Taiwan. Electronic address:

The recurrence and metastasis in breast cancer within 3 years after the chemotherapies or surgery leads to poor prognosis with approximately 1-year overall survival. Large-scale scanning research studies have shown that taking lipid-lowering drugs may assist to reduce the risk of death from many cancers, since cholesterol in lipid rafts are essential for maintain integral membrane structure and functional signaling regulation. In this study, we examined five lipid-lowering drugs: swertiamarin, gemfibrozil, clofibrate, bezafibrate, and fenofibrate in triple-negative breast cancer, which is the most migration-prone subtype.

View Article and Find Full Text PDF

Overcoming Cancer Resistance to Platinum Drugs by Inhibiting Cholesterol Metabolism.

Angew Chem Int Ed Engl

October 2023

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.

Drug resistance is a serious challenge for platinum anticancer drugs. Platinum complexes may get over the drug resistance via a distinct mechanism of action. Cholesterol is a key factor contributing to the drug resistance.

View Article and Find Full Text PDF

Glioblastomas are highly aggressive brain tumors for which therapeutic options are very limited. In a quest for new anti-glioblastoma drugs, we focused on specific structural modifications to the benzoyl-phenoxy-acetamide (BPA) structure present in a common lipid-lowering drug, fenofibrate, and in our first prototype glioblastoma drug, PP1. Here, we propose extensive computational analyses to improve the selection of the most effective glioblastoma drug candidates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!