Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles.

Proc Natl Acad Sci U S A

Department of Tectonophysics, GNS Science, 5040 Lower Hutt, New Zealand.

Published: May 2018

Periodic fluctuations in past biodiversity, speciation, and extinction have been proposed, with extremely long periods ranging from 26 to 62 million years, although forcing mechanisms remain speculative. In contrast, well-understood periodic Milankovitch climate forcing represents a viable driver for macroevolutionary fluctuations, although little evidence for such fluctuation exists except during the Late Cenozoic. The reality, magnitude, and drivers of periodic fluctuations in macroevolutionary rates are of interest given long-standing debate surrounding the relative roles of intrinsic biotic interactions vs. extrinsic environmental factors as drivers of biodiversity change. Here, we show that, over a time span of 60 million years, between 9 and 16% of the variance in biological turnover (i.e., speciation probability plus species extinction probability) in a major Early Paleozoic zooplankton group, the graptoloids, can be explained by long-period astronomical cycles (Milankovitch "grand cycles") associated with Earth's orbital eccentricity (2.6 million years) and obliquity (1.3 million years). These grand cycles modulate climate variability, alternating times of relative stability in the environment with times of maximum volatility. We infer that these cycles influenced graptolite speciation and extinction through climate-driven changes to oceanic circulation and structure. Our results confirm the existence of Milankovitch grand cycles in the Early Paleozoic Era and show that known processes related to the mechanics of the Solar System were shaping marine macroevolutionary rates comparatively early in the history of complex life. We present an application of hidden Markov models to macroevolutionary time series and protocols for the evaluation of statistical significance in spectral analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984487PMC
http://dx.doi.org/10.1073/pnas.1714342115DOI Listing

Publication Analysis

Top Keywords

macroevolutionary rates
12
grand cycles
12
milankovitch grand
8
periodic fluctuations
8
speciation extinction
8
early paleozoic
8
macroevolutionary
5
cycles
5
pacing paleozoic
4
paleozoic macroevolutionary
4

Similar Publications

The Metapopulation Bridge to Macroevolutionary Speciation Rates: A Conceptual Framework and Empirical Test.

Ecol Lett

January 2025

Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.

Whether large-scale variation in lineage diversification rates can be predicted by species properties at the population level is a key unresolved question at the interface between micro- and macroevolution. All else being equal, species with biological attributes that confer metapopulation stability should persist more often at timescales relevant to speciation and so give rise to new (incipient) forms that share these biological traits. Here, we develop a framework for testing the relationship between metapopulation properties related to persistence and phylogenetic speciation rates.

View Article and Find Full Text PDF

Completing a molecular timetree of primates.

Front Bioinform

December 2024

Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States.

Primates, consisting of apes, monkeys, tarsiers, and lemurs, are among the most charismatic and well-studied animals on Earth, yet there is no taxonomically complete molecular timetree for the group. Combining the latest large-scale genomic primate phylogeny of 205 recognized species with the 400-species literature consensus tree available from TimeTree.org yields a phylogeny of just 405 primates, with 50 species still missing despite having molecular sequence data in the NCBI GenBank.

View Article and Find Full Text PDF

The effects of single chromosome number change-dysploidy - mediating diversification remain poorly understood. Dysploidy modifies recombination rates, linkage, or reproductive isolation, especially for one-fifth of all eukaryote lineages with holocentric chromosomes. Dysploidy effects on diversification have not been estimated because modeling chromosome numbers linked to diversification with heterogeneity along phylogenies is quantitatively challenging.

View Article and Find Full Text PDF

Adaptive radiations are rich laboratories for exploring, testing, and understanding key theories in evolution and ecology because they offer spectacular displays of speciation and ecological adaptation. Particular challenges to the study of adaptive radiation include high levels of species richness, rapid speciation, and gene flow between species. Over the last decade, high-throughput sequencing technologies and access to population genomic data have lessened these challenges by enabling the analysis of samples from many individual organisms at whole-genome scales.

View Article and Find Full Text PDF

The Plio-Pleistocene turnover event in the western Atlantic following the closure of the Central American Seaway involved high rates of extinction for both gastropod and bivalve molluscs. This extinction was associated with declining nutrient conditions and has been presumed to be associated with a decrease in molluscan body size. Previous work which has been concordant with this expectation, however, has either focused on bivalves or not considered the effects of the recovery post extinction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!