Sustaining and Disruptive Innovation in Clinical Electrophysiology: The Subcutaneous Implantable Cardioverter-Defibrillator in the Young.

JACC Clin Electrophysiol

Department of Pediatric Cardiology, Cleveland Clinic, Cleveland, Ohio. Electronic address:

Published: December 2017

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacep.2017.09.179DOI Listing

Publication Analysis

Top Keywords

sustaining disruptive
4
disruptive innovation
4
innovation clinical
4
clinical electrophysiology
4
electrophysiology subcutaneous
4
subcutaneous implantable
4
implantable cardioverter-defibrillator
4
cardioverter-defibrillator in the young
4
sustaining
1
innovation
1

Similar Publications

Discovery, Characterization, and Application of Broad-Spectrum Antimicrobial Peptide AtR905 from as a Biocontrol Agent.

J Agric Food Chem

December 2024

Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

This study investigates a novel antimicrobial peptide AtR905 derived from the endophytic fungus , which was successfully expressed in , purified, and characterized, and highlighted as a promising potential biocontrol agent against various plant pathogens. The results indicated AtR905 exhibited broad-spectrum antimicrobial activities against key pathogens such as and with very low minimal inhibitory concentrations (MICs). Stability tests confirmed that AtR905 retains its antimicrobial properties under varying thermal, pH, and UV conditions.

View Article and Find Full Text PDF

The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.

View Article and Find Full Text PDF

Marine Invasive Algae's Bioactive Ingredients as a Sustainable Pathway in Cosmetics: The Azores Islands as a Case Study.

Mar Drugs

December 2024

Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.

Marine invasive species pose significant ecological, economic, and social challenges, disrupting native ecosystems, outcompeting local species and altering biodiversity. The spread of these species is largely driven by global trade, shipping, and climate change, which allow non-native species to establish themselves in new environments. Current management strategies, including early detection, rapid response, and biosecurity measures, have had some success, but the complexity and scale of the problem require continuous monitoring.

View Article and Find Full Text PDF

Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells.

Mar Drugs

December 2024

Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.

The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.

View Article and Find Full Text PDF

Myogenic regulator factors (MRFs) are essential for skeletal muscle development in vertebrates, including fish. This study aimed to characterize the role of () in muscle development in Nile tilapia by cloning from muscle tissues. To explore the function of , CRISPR/Cas9 gene editing was employed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!