We have recently reported that the Transient Receptor Potential Ankyrin 1 (TRPA1) receptor deficiency significantly attenuated cuprizone-induced demyelination by reducing the apoptosis of mature oligodendrocytes. The aim of the present study was to gather additional data on the role of TRPA1 by investigating the time course of behavioural alterations and morphological changes in cuprizone-treated TRPA1 receptor gene-deficient mice. Demyelination was induced by feeding male wild-type (WT) and TRPA1 gene-deleted (TRPA1 KO) mice with 0.2% cuprizone for 6 weeks. Behavioural tests were performed once per week to follow cuprizone-induced functional changes. Mechanonociceptive thresholds were investigated by a dynamic plantar aesthesiometer and von Frey filaments. Motor performance was assessed by accelerating RotaRod and horizontal grid tests. For the study of spontaneous activity, the open field test was used. The time course of corpus callosum demyelination was also followed weekly by magnetic resonance imaging (MRI). Histological analysis of myelin loss was performed with Luxol Fast Blue (LFB) staining at week 3 and electron microscopy (EM) at week 6. Astrocyte and microglia accumulation at week 3 was assessed by immunohistochemistry (IHC). Cuprizone treatment induced no changes in mechanonociception or motor performance. In the open arena, cuprizone-treated mice spent more time with locomotion, their mean velocity was significantly higher and the distance they travelled was longer than untreated mice. No statistical difference was detected between WT and TRPA1 KO mice in these parameters. On the other hand, significantly increased rearing behaviour was induced in WT mice compared to TRPA1 KO animals. Morphological changes detected with MRI, LFB, IHC and EM analysis revealed reduced damage of the myelin and attenuated accumulation of astrocytes and microglia in cuprizone-treated TRPA1 KO animals, at each examined time point. Our recent data further suggest that inhibition of TRPA1 receptors could be a promising therapeutic approach to limit central nervous system damage in demyelinating diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneuroim.2018.03.020 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China.
Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.
Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.
Eur Spine J
January 2025
Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
Background: Intervertebral disc (IVD) degeneration is the main cause of neck pain. Although conventional magnetic resonance imaging can detect morphological changes in intervertebral disc degeneration, it cannot provide accurate and objective evaluations. Magnetic resonance diffusion tensor imaging (DTI) reflects the microstructural changes in tissues by describing the diffusion of water molecules.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India.
Background: The identification of helminth parasites in Schizothorax spp. from Kashmir, including Schyzocotyle acheilognathi, Pomphorhynchus kashmirensis, and Adenoscolex oreini, is hindered by morphological limitations and high intraspecific variation. While previous studies have relied on morphological diagnosis, a comprehensive molecular characterization is lacking.
View Article and Find Full Text PDFDue to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells.
View Article and Find Full Text PDFBio Protoc
January 2025
Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University. Baoding, China.
Mitochondrial cristae, formed by folding the mitochondrial inner membrane (IM), are essential for cellular energy supply. However, the observation of the IM is challenging due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vitro probes specifically targeting the IM. Here, we describe a detailed imaging protocol for the mitochondrial inner membrane using the Si-rhodamine dye HBmito Crimson, which has excellent photophysical properties, to label live cells for imaging via stimulated emission depletion (STED) microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!