We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system-in which planets have masses comparable to those of planets in the solar system-the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.97.042221 | DOI Listing |
ACS Earth Space Chem
January 2025
Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249, United States.
In this study, we measured the single-crystal elasticity of α-hydroquinone at ambient conditions using Brillouin spectroscopy to assess the feasibility of this technique for studying the mechanical properties of organic ices in the outer solar system. In this study, α-hydroquinone serves as an ambient temperature analogue for low-temperature organic ices on Titan and other solar system bodies. We found that a satisfactory Brillouin spectrum can be obtained in less than 5 min of experimental time with negligible damage to the sample.
View Article and Find Full Text PDFNat Hum Behav
January 2025
Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands.
Science is crucial for evidence-based decision-making. Public trust in scientists can help decision makers act on the basis of the best available evidence, especially during crises. However, in recent years the epistemic authority of science has been challenged, causing concerns about low public trust in scientists.
View Article and Find Full Text PDFSci Data
January 2025
Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.
Science is integral to society because it can inform individual, government, corporate, and civil society decision-making on issues such as public health, new technologies or climate change. Yet, public distrust and populist sentiment challenge the relationship between science and society. To help researchers analyse the science-society nexus across different geographical and cultural contexts, we undertook a cross-sectional population survey resulting in a dataset of 71,922 participants in 68 countries.
View Article and Find Full Text PDFObjectives: This qualitative study explored public and prescriber awareness of pharmaceutical pollution in the water environment and eco-directed sustainable prescribing (EDSP) as a mitigation strategy to reduce the environmental impact of prescribing in Scotland.
Design: Focus groups explored prescriber and public perceptions of the topic. Common questions were asked through semistructured facilitation.
Rapid Commun Mass Spectrom
April 2025
Solar System Exploration Division, NASA Goddard Space Center, Greenbelt, Maryland, USA.
Rationale: Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass consumption, and chromatographic interferences from derivatization reagents and non-target compounds.
Methods: Here we demonstrate a highly efficient method to analyze the composition and compound specific isotopic ratios of C to C amines as well as ammonia based on solid phase micro-extraction (SPME) on-fiber derivatization.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!