Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature T_{c} of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.97.042603 | DOI Listing |
BMC Endocr Disord
January 2025
School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
Background: As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania.
Olmesartan medoxomil (OLM) is the prodrug of olmesartan, an angiotensin II type 1 receptor blocker that has antihypertensive and antioxidant activities and renal protective properties. It exhibits low water solubility, which leads to poor bioavailability and limits its clinical potential. To improve the solubility of OLM, a host-guest inclusion complex (IC) between heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMβCD) and the drug substance was obtained.
View Article and Find Full Text PDFFoods
December 2024
School of Food Science and Engineering, Hainan University, Haikou 570228, China.
Pandan, a tropical crop, is rich in squalene (SQ), known for its antioxidant and hypoglycemic properties, and 2-acetyl-1-pyrroline (2-AP), which imparts a characteristic aroma. This study focuses on the extraction of the two bioactive compounds from Pandan leaves and investigates the effects of drying methods, extraction solvents, and conditions on the yield of SQ and 2-AP. Results show that hot air-dried Pandan leaves when extracted using the binary solvent system of ethanol and n-hexane (EH), yield higher SQ content while maintaining an adequate content of 2-AP.
View Article and Find Full Text PDFLangmuir
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.
View Article and Find Full Text PDFEnviron Res
January 2025
Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain. Electronic address:
This work explores the synergies between N-rich (Chlorella pyrenoidosa) and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!