Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, electrostatic forces between charged nanogels are explored through coarse-grained simulations. These simulations allow us to explicitly consider the complex topology of these nanoparticles and provide reliable force values to examine highly charged nanogels of a few tens of nanometers. The results obtained here clearly reveal that the electrostatic interactions between these nanoparticles are not governed by the net charge of the nanogel, which includes not only the charge of the polymer network but also the charge of ions inside. Thus two theoretical procedures for predicting effective charges are also proposed and investigated. Both provide predictions of the same order and capture the behavior found for the effective charge obtained from simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.97.042608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!