Background/aims: Circular RNAs (circRNAs) are transcribed prevalently in the genome; however, their potential roles in multiple cardiovascular diseases, particularly preeclampsia (PE), are not yet well understood. This study investigated the expression profiles of circRNAs and explored circRNA-mediated pregnancy-associated plasma protein A (PAPP-A) expression as a potential biomarker for PE before 20 weeks of pregnancy.

Methods: A nested case-control two-phase screening/validation study was performed in pregnant women before 20 weeks of gestation (before clinical diagnosis) at Guangzhou Women and Children's Medical Center from 2012 to 2015. In the screening phase, circRNA expression profiles of blood cells were assessed using a human circRNA microarray, which was designed to detect simultaneously 5396 circRNAs, in 5 patients with PE and 5 age- and gestational week-matched controls. In the validation phase, 18 circRNAs in blood cells predicted by bioinformatics tools were validated by quantitative reverse transcription PCR in a cohort of 60 patients (PE and age-, gestational week-, and sample storage time-matched controls). Then, we examined the involvement of circRNAs in PE-related pathways via interactions with miRNAs by multiple bioinformatics approaches. Bioinformatics analysis predicted that hsa_circ_0004904 and hsa_circ_0001855 miRNA sponges directly target PAPP-A. PAPP-A was verified in the serum of the same cohort of patients using an enzyme-linked immunosorbent assay. Finally, we combined PAPP-A with circRNAs to create a novel preclinical diagnostic model for PE with logistic regression and evaluated the efficiency of this model with receiver operating curve analysis.

Results: Volcano plot analysis using various parameters showed that circRNAs were differentially expressed among both groups (P < 0.01, fold change > 2). In the screening phase, we found that 2178 circRNAs were differentially expressed between the control and PE groups, in which 884 circRNAs were downregulated and 1294 circRNAs were upregulated in the PE group compared with the control group. In the validation phase, two circRNAs, hsa_circ_0004904 and hsa_circ_0001855, were significantly upregulated in PE patients compared with healthy pregnant women (P < 0.05). PAPP-A expression levels, related to the two circRNAs based on bioinformatics prediction, were increased in the PE group compared with the control group. The area under the curve of the combined model was 0.94 in the predicted PE subjects.

Conclusions: This is the first study to report circRNA profiling in patients with PE prior to the onset of symptoms. Our data suggested that hsa_circ_0004904 and hsa_circ_0001855 combined with PAPP-A might be promising biomarkers for the detection of PE. Moreover, circRNAs may provide new insights into the potential mechanisms underlying the pathophysiology of PE.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000489685DOI Listing

Publication Analysis

Top Keywords

circrnas
13
hsa_circ_0004904 hsa_circ_0001855
12
expression profiles
8
papp-a expression
8
pregnant women
8
screening phase
8
blood cells
8
patients age-
8
age- gestational
8
validation phase
8

Similar Publications

Expanding the Potential of Circular RNA (CircRNA) Vaccines: A Promising Therapeutic Approach.

Int J Mol Sci

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.

In recent years, circular RNAs (circRNAs) have garnered significant attention due to their unique structure and function, positioning them as promising candidates for next-generation vaccines. The circRNA vaccine, as an RNA vaccine, offers significant advantages in preventing infectious diseases by serving as a vector for protein expression through non-canonical translation. Notably, circRNA vaccines have demonstrated enduring antigenic expression and generate a larger percentage of neutralizing antibodies compared to mRNA vaccines administered at the same dosage.

View Article and Find Full Text PDF

CircTEC Inhibits the Follicular Atresia in Buffalo () via Targeting miR-144-5p/FZD3 Signaling Axis.

Int J Mol Sci

December 2024

Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.

The specific expression profile and function of circular RNA (circRNA) in follicular atresia remain largely unknown. Here, the circRNA expression profiles of granulosa cells derived from healthy follicles (HFs) and antral follicles (AFs) in buffalo were analyzed by RNA-seq, and the mechanism of a differentially expressed circRNA (DEcircRNA) circTEC regulating the granulosa cell function that affects follicular atresia was further explored. RNA-seq results showed that a total of 112 DEcircRNAs were identified.

View Article and Find Full Text PDF

Thrombin binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers that efficiently binds to thrombin, resulting in anticoagulant effects. TBA also possesses promising antiproliferative properties. As with most therapeutic oligonucleotides, chemical modifications are critical for therapeutic applications, particularly to improve thermodynamic stability, resistance in biological environment, and target affinity.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!