Rolling-made gas diffusion electrode with carbon nanotube for electro-Fenton degradation of acetylsalicylic acid.

Chemosphere

Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Published: September 2018

HO production plays an important role in electro-Fenton process for pharmaceutical and personal care products (PPCPs) degradation. In this work, carbon nanotube (CNT) was attempted to make a gas diffusion electrode (GDE) by rolling method to achieve a high HO production and current efficiency, and it was further used as electro-Fenton cathode for the degradation of acetylsalicylic acid (ASA) as one kind of PPCPs. The optimal amount of catalyst layer was 0.15 g CNT and 93.75 μL PTFE, obtaining the production of HO of 805 mg L in 0.05 mM NaSO solution at 100 mA after 180 min. The degradation of ASA by electro-Fenton on such a CNT-GDE cathode was studied, and some important parameters such as current, pH as well as the dosage of Fe were optimized. The degradation ratio of ASA could achieve almost 100% after 10 min and the TOC removal ratio was 62% at 1 h under the condition of 100 mA and pH 3, showing a great potential for the treatment of PPCPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.05.027DOI Listing

Publication Analysis

Top Keywords

gas diffusion
8
diffusion electrode
8
carbon nanotube
8
degradation acetylsalicylic
8
acetylsalicylic acid
8
degradation
5
rolling-made gas
4
electrode carbon
4
electro-fenton
4
nanotube electro-fenton
4

Similar Publications

Balancing pH and Pressure Allows Boosting Voltage and Power Density for a H-I Redox Flow Battery.

ACS Appl Energy Mater

January 2025

Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands.

The decoupled power and energy output of a redox flow battery (RFB) offers a key advantage in long-duration energy storage, crucial for a successful energy transition. Iodide/iodine and hydrogen/water, owing to their fast reaction kinetics, benign nature, and high solubility, provide promising battery chemistry. However, H-I RFBs suffer from low open circuit potentials, iodine crossover, and their multiphase nature.

View Article and Find Full Text PDF

pH remains the most important chemical parameter and must be monitored for positive outcomes in areas as different as cheese making and fertilisation (IVF). Where blood gas analysers enable patient monitoring, starter cultures in cheese manufacturing are still monitored using conventional pH electrodes. Here, we present a homogeneous multiwell plate sensor for monitoring pH, with the same sensitivity as a pH electrode.

View Article and Find Full Text PDF

This study presents the synthesis of a Cd(II) based hydrophobic three dimensional crystalline network material (CNM), [Cd(L)(LH)(bpe)], {L = {4,4'-(hexafluroisopropylidine)bis(benzoate)} and 1,2-di(4-pyridyl) ethylene (bpe)}, 1(Cd), by employing the slow-diffusion method. The three-dimensional structure of 1(Cd) was determined by single crystal X-ray diffraction and characterized by powder X-ray diffraction (PXRD), FT-IR spectroscopy and thermogravimetric analysis (TGA). Subsequently, post-synthetic modification of 1(Cd) with Cu(II) at room temperature led to the formation of isostructural 1(Cu) with partial substitution.

View Article and Find Full Text PDF

Continuous photo-oxidation of methane to methanol at an atomically tailored reticular gas-solid interface.

Nat Commun

January 2025

Research Center for Solar Driven Carbon Neutrality, School of Physics Science and Technology, In-stitute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.

Photo-oxidation of methane (CH) using hydrogen peroxide (HO) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH gas and HO intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH photo-oxidation to methanol at the gas-solid interface in a reticular open framework.

View Article and Find Full Text PDF

Layered double hydroxides (LDH) are compounds with unique structures of hydroxide functional groups on their surfaces, and they have the proper arrangement of divalent and trivalent cations to adjust their unique catalytic actions. LDH was synthesized utilizing the co-precipitation technique and was thermally treated at 300 °C. The prepared compounds were chemically and structurally elucidated using FT-IR, XRD, SEM, BET, TG-DTA, and XPS characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!