Night adders (Causus species within the Viperidae family) are amphibian specialists and a common source of snakebite in Africa. Some species are unique in that they have the longest venom glands of any viper, extending approximately 10% of the body length. Despite their potential medical importance and evolutionary novelty, their venom has received almost no research attention. In this study, venoms from a short-glanded species (C. lichtensteinii) and from a long-glanded species (C. rhombeatus) were compared using a series of proteomic and bioactivity testing techniques to investigate and compare the toxin composition and functioning of the venoms of these two species. Both C. rhombeatus and C. lichtensteinii were similar in overall venom composition and inhibition of blood coagulation through non-clotting proteolytic cleavage of fibrinogen. While the 1D gel profiles were very similar to each other in the toxin types present, 2D gel analyses revealed isoformic differences within each toxin classes. This variation was congruent with differential efficacy of South African Institute for Medical Research snake polyvalent antivenom, with C. lichtensteinii unaffected at the dose tested while C. rhombeatus was moderately but significantly neutralized. Despite the variation within toxin classes, the similarity in overall venom biochemistry suggests that the selection pressure for the evolution of long glands served to increase venom yield in order to subjugate proportionally large anurans as a unique form of niche partitioning, and is not linked to significant changes in venom function. These results not only contribute to the body of venom evolution knowledge but also highlight the limited clinical management outcomes for Causus envenomations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2018.05.003DOI Listing

Publication Analysis

Top Keywords

venom
9
species viperidae
8
venom glands
8
species rhombeatus
8
toxin classes
8
species
6
size matter?
4
matter? venom
4
venom proteomic
4
proteomic functional
4

Similar Publications

Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway.

J Cardiovasc Transl Res

December 2024

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.

Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis.

View Article and Find Full Text PDF

Characterization of a novel acidic phospholipase A isolated from the venom of Bothrops mattogrossensis: From purification to structural modeling.

Int J Biol Macromol

December 2024

Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Department of Medicine, Federal University of Rondonia (UNIR), Porto Velho, RO, Brazil. Electronic address:

Phospholipases A (PLAs) are highly prevalent in Bothrops snake venom and play a crucial role in inflammatory responses and immune cell activation during envenomation. Despite their significance, the specific role of PLAs from Bothrops mattogrossensis venom (BmV) in inflammation is not fully understood. This study sought to isolate and characterize a novel acidic PLA from BmV, designated BmPLA-A, and to evaluate its effects on human umbilical vein endothelial cells (HUVECs), with a specific focus on cytotoxicity, adhesion, and detachment.

View Article and Find Full Text PDF

Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.

View Article and Find Full Text PDF

The Venom of : Proteomics, Neurotoxic Effect and Neutralization by Antivenom.

Vet Sci

November 2024

Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia.

Deep proteomic analyses identified, in total, 159 master proteins (with 1% FDR and 2 unique peptides) from 26 protein families in the venom of Data are available via ProteomeXchange with the identifier PXD056495. The relative abundance of PLA2s is 11.60% of the crude venom, of which 4.

View Article and Find Full Text PDF

Snakes responsible for bites are rarely identified, resulting in a loss of information about snakebites from venomous species whose venom effects are poorly understood. A prospective clinical study including patients bitten by a snake was conducted in Cameroon between 2019 and 2021 to evaluate the efficacy and tolerability of a marketed polyvalent antivenom. Clinical presentation during the first 3 days of hospitalization was recorded following a standardized protocol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!