Probing flecainide block of I using human pluripotent stem cell-derived ventricular cardiomyocytes adapted to automated patch-clamping and 2D monolayers.

Toxicol Lett

Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong. Electronic address:

Published: September 2018

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are emerging tools for applications such as drug discovery and screening for pro-arrhythmogenicity and cardiotoxicity as leading causes for drug attrition. Understanding the electrophysiology (EP) of hPSC-CMs is essential but conventional manual patch-clamping is highly laborious and low-throughput. Here we adapted hPSC-CMs derived from two human embryonic stem cell (hESC) lines, HES2 and H7, for a 16-channel automated planar-recording approach for single-cell EP characterization. Automated current- and voltage-clamping, with an overall success rate of 55.0 ± 11.3%, indicated that 90% of hPSC-CMs displayed ventricular-like action potential (AP) and the ventricular cardiomyocytes (VCMs) derived from the two hESC lines expressed similar levels of I, I, I and I and similarly lacked I and I. These well-characterized hPSC-VCMs could also be readily adapted for automated assays of pro-arrhythmic drug screening. As an example, we showed that flecainide (FLE) induced I blockade, leftward steady-state inactivation shift, slowed recovery from inactivation in our hPSC-VCMs. Since single-cell EP assay is insufficient to predict drug-induced reentrant arrhythmias, hPSC-VCMs were further reassembled into 2D human ventricular cardiac monolayers (hvCMLs) for multi-cellular electrophysiological assessments. Indeed, FLE significantly slowed the conduction velocity while causing AP prolongation. Our RNA-seq data suggested that cell-cell interaction enhanced the maturity of hPSC-VCMs. Taken collectively, a combinatorial approach using single-cell EP and hvCMLs is needed to comprehensively assess drug-induced arrhythmogenicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2018.05.006DOI Listing

Publication Analysis

Top Keywords

human pluripotent
8
pluripotent stem
8
stem cell-derived
8
ventricular cardiomyocytes
8
adapted automated
8
hesc lines
8
approach single-cell
8
probing flecainide
4
flecainide block
4
human
4

Similar Publications

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

A novel quantitative angiogenesis assay based on visualized vascular organoid.

Angiogenesis

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.

Angiogenesis describes the sprouting of blood vessels from existing vasculatures and it plays a pivotal role in disease progress such as diabetes, age-related macular degeneration and cancer. However, the most widely used anti-angiogenic agents targeting vascular endothelial growth factor (VEGF) pathway still lacked of specificity and therapeutic efficacy. To establish a method suitable for high-throughput drug screening and faithfully recapitulate the feature of in vivo angiogenesis, we generated a PECAM1-mRuby3-secNluc; ACTA2-EGFP dual reporter human pluripotent stem cell (hPSC) line and utilizing the cell line to establish a visualized and quantifiable in vitro angiogenesis model with stem cell-derived vascular organoid.

View Article and Find Full Text PDF

Background: Tau is a neuronal microtubule associated protein whose interactions with microtubules are regulated by phosphorylation. Tau has numerous putative phosphorylation sites, but it is unclear which combinations of Tau phosphorylation co-occur in the normal state and precisely how they impact Tau function. Adding further complexity, there are six major Tau isoforms arising from alternative splicing.

View Article and Find Full Text PDF

Background: Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TDP-43 pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN levels in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution.

View Article and Find Full Text PDF

Background: The Accelerating Medicines Partnership in Alzheimer's Disease (AMP-AD) is a public-private partnership linking NIH, the FDA, pharmaceutical companies, and nonprofit organizations in an interactive, collaborative program utilizing transcriptomics, genomics, metagenomics, proteomics, and metabolomics to provide data for computational analysis, that, in turn, enables promising targets to be ranked by a combination of omic scores and druggability. This ranking informs the selection of targets for validation.

Method: Human postmortem samples were obtained from Mount Sinai, ROSMAP (Religious Orders Study and Rush Memory and Aging Project), Mayo Clinic (Florida), and Columbia University.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!