Spinal cord injury (SCI) causes irreversible tissue damage and severe loss of neurological function. Currently, there are no approved treatments and very few therapeutic targets are under investigation. Here, we combined 4 high-throughput transcriptomics and proteomics datasets, 7 days and 8 weeks following clinically-relevant rat SCI to identify proteins with persistent differential expression post-injury. Out of thousands of differentially regulated entities our combined analysis identified 40 significantly upregulated versus 48 significantly downregulated molecules, which were persistently altered at the mRNA and protein level, 7 days and 8 weeks post-SCI. Bioinformatics analysis was then utilized to identify currently available drugs with activity against the filtered molecules and to isolate proteins with known or unknown function in SCI. Our findings revealed multiple overlooked therapeutic candidates with important bioactivity and established druggability but with unknown expression and function in SCI including the upregulated purine nucleoside phosphorylase (PNP), cathepsins A, H, Z (CTSA, CTSH, CTSZ) and proteasome protease PSMB10, as well as the downregulated ATP citrate lyase (ACLY), malic enzyme (ME1) and sodium-potassium ATPase (ATP1A3), amongst others. This work reveals previously unappreciated therapeutic candidates for SCI and available drugs, thus providing a valuable resource for further studies and potential repurposing of existing therapeutics for SCI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983596 | PMC |
http://dx.doi.org/10.3390/ijms19051461 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
Capsaicin is commonly used as a flavoring and a riot control agent. However, long-term exposure or high doses can cause acute lung injury in military and police personnel. The mechanisms underlying capsaicin-induced pulmonary toxicity remain unclear.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece.
: Vine leaves are a bulky by-product that are disposed of and treated as waste in the wine production process. In the present study polyphenols from vine leaves were extracted and simultaneously encapsulated in a new delivery system consisting of liposomes and cyclodextrins. This system was further combined with propolis polyphenols encapsulated in cyclodextrins, resulting in a colloidal suspension for the release of antioxidants in a time-controlled way, the rate of which depends on the ratio of the materials.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.
In the present work, we examined the effects of exogenous abscisic acid (ABA) under ultraviolet B (UV-B) exposure on gibberellin (GA) production, signaling, and antioxidant-related genes in Pall (). Using transcriptomics, acetylated proteomics, and widely targeted metabolomics, the effects of UV-B stress on and the regulatory effects of exogenous ABA on it were revealed from multiple perspectives. The findings revealed that 's antioxidant enzyme genes were differentially expressed by UV-B radiation and were substantially enriched in the glutathione metabolic pathway.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, Instituto de Investigación Sanitaria de Canarias, 38010 Santa Cruz de Tenerife, Spain.
Since their discovery, corticosteroids have been widely used in the treatment of several diseases, including asthma, acute lymphoblastic leukemia, chronic obstructive pulmonary disease, and many other conditions. However, it has been noted that some patients develop undesired side effects or even fail to respond to treatment. The reasons behind this have not yet been fully elucidated.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
Salt stress poses a significant challenge to plant growth and restricts agricultural development. To delve into the intricate mechanisms involved in soybean's response to salt stress and find targets to improve the salt resistance of soybean, this study integrated transcriptomic, proteomic, and metabolomic analyses to explore the regulatory networks involved in soybean salt tolerance. Transcriptomic analysis revealed significant changes in transcription factors, hormone-related groups, and calcium ion signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!