Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl₂ deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl₂ solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978170 | PMC |
http://dx.doi.org/10.3390/ma11050793 | DOI Listing |
Polymers (Basel)
December 2024
School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
In order to investigate the mechanism of mechanical performance enhancement and the curing mechanisms of acrylate emulsion (AE) in cement and magnesium slag (MS) composite-stabilized soil (AE-C-M), this study has conducted a comprehensive analysis of the compressive strength and microstructural characteristics of AE-C-M stabilized soil. The results show that the addition of AE significantly improves the compressive strength of the stabilized soil. When the AE content is 0.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Architecture and Civil Engineering, TU Dortmund University, 44227 Dortmund, Germany.
Industrial and construction wastes make up about half of all world wastes. In order to reduce their negative impact on the environment, it is possible to use part of them for concrete production. Using experimental-statistical modeling techniques, the combined effect of brick powder, recycling sand, and alkaline activator on fresh and hardened properties of self-compacting concrete for the production of textile-reinforced concrete was investigated.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Slovenian National Building and Civil Engineering Institute, 1000 Ljubljana, Slovenia.
The increase in industrial waste generation presents a global problem that is a consequence of the needs of modern society. To achieve the goals of the EU Green Deal and to promote the concept of circular economy (CE), the valorization of industrial residues as secondary raw materials offers a pathway to economic, environmental, energetic, and social sustainability. In this respect, Al-containing industrial residues from alumina processing (red mud), thermal power plants (fly ash and bottom ash), and metallurgy (slag), as well as other industries, present a valuable mineral resource which can be considered as secondary raw materials (SRMs) with the potential to be used in construction, supporting the concept of circular economy.
View Article and Find Full Text PDFSci Rep
January 2025
Civil and Environmental Engineering Faculty, Amirkabir University of Technology, Tehran, Iran.
This investigation addresses the reinforcement of rammed earth (RE) structures by integrating carpet polyacrylic yarn waste (CPYW) generated from the carpet production process and employing Ground Granulated Blast-Furnace Slag (GGBS) as a stabilizer, in conjunction with alkali activators potassium hydroxide (KOH), to enhance their mechanical properties. The study included conducting Unconfined Compressive Strength (UCS) tests and Brazilian Tensile Strength (BTS) tests on plain samples, GGBS-stabilized (SS) samples, CPYW-reinforced (CFS) samples, and samples reinforced with a combination of GGBS and CPYW (SCFS). The results showed that the mechanical and resistance properties of the CFS and SCFS samples were improved; these findings were confirmed by the presence of more cohesive GGBS gel and fibers as seen in FE-SEM and microscopic images.
View Article and Find Full Text PDFACS Omega
December 2024
School of Petroleum Engineering, Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China.
The type of activator has a significant impact on the performance of alkali-activated slag, and there is little research on the effect of activator type on the high-temperature performance of alkali-activated slag. The effects of activator type on the thickening time, compressive strength, and rheological properties of alkali-activated slag under a high-temperature condition were studied in this article. Six activators were designed using Ca(OH), NaCO, and NaSO and their combination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!