An Efficient Method for the Expression and Purification of Aβ(M1-42).

Biochemistry

Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States.

Published: July 2018

Advances in amyloid research rely on improved access to the β-amyloid peptide, Aβ. N-Terminal methionine-extended Aβ, Aβ(M1-42), is a readily expressed and widely used form of Aβ with properties comparable to those of the natural Aβ(1-42) peptide. Expression of Aβ(M1-42) is simple to execute and avoids an expensive and often difficult enzymatic cleavage step associated with expression and isolation of Aβ(1-42). This paper reports an efficient method for the expression and purification of Aβ(M1-42) and N-labeled Aβ(M1-42). This method affords the pure peptide at ∼19 mg/L of bacterial culture through simple and inexpensive steps in 3 days. This paper also reports a simple method for the construction of recombinant plasmids and the expression and purification of Aβ(M1-42) peptides containing familial mutations. We anticipate that these methods will enable experiments that would otherwise be hindered by insufficient access to Aβ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320699PMC
http://dx.doi.org/10.1021/acs.biochem.8b00393DOI Listing

Publication Analysis

Top Keywords

expression purification
12
purification aβm1-42
12
efficient method
8
method expression
8
paper reports
8
aβm1-42
6
expression
5
aβm1-42 advances
4
advances amyloid
4
amyloid rely
4

Similar Publications

Voltage-dependent anion channel 1 (VDAC1) is a key protein in cellular metabolism and apoptosis. Here, we present a protocol to express and purify milligram amounts of recombinant VDAC1 in Escherichia coli. We detail steps for a fluorescence polarization-based high-throughput screening assay using NADH displacement, along with procedures for thermostability, fluorescence polarization, and X-ray crystallography.

View Article and Find Full Text PDF

Complex transcription regulation of acidic chitinase suggests fine-tuning of digestive processes in Drosera binata.

Planta

January 2025

Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.

DbChitI-3, Drosera binata's acidic chitinase, peaks at pH 2.5 from 15 °C to 30 °C. Gene expression is stimulated by polysaccharides and suppressed by monosaccharide digestion, implying a feedback loop in its transcriptional regulation.

View Article and Find Full Text PDF

Diagnosis and molecular characterization of three allexiviruses infecting garlic crop in Saudi Arabia.

Cell Mol Biol (Noisy-le-grand)

January 2025

Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.

Forty-four samples of garlic plants showing virus-like symptoms were collected, during the growing season (2021-2022) from different locations in Qassim province, Saudi Arabia. These samples were analyzed by ELISA against the important Allium allexiviruses including garlic virus A (GarV-A), garlic virus B (GarV-B), garlic virus C (GarV-C), and Shallot virus X (ShVX). The obtained results showed that 22/44 (50%) samples were found to be infected with one of the tested viruses.

View Article and Find Full Text PDF

Resinacein S ameliorates the obesity in mice via activating the brown adipose tissue.

Pak J Pharm Sci

January 2025

Department of Endocrinology, Gongli Hospital of Shanghai Pudong New Area, School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China.

Brown adipose tissue (BAT) is an ideal target organ for obesity treatment. Resinacein S is extracted from Ganoderma lucidum and can elevate Uncoupling protein 1 (UCP1) in cells, but its related effects at the animal level are not clear. The mice were fed with high-fat diet to construct obesity models and treated with Resinacein S.

View Article and Find Full Text PDF

Ikarugamycin is a member of the natural product family of the polycyclic tetramate macrolactams (PoTeMs). The compound exhibits a diverse range of biological activities, including antimicrobial, antiprotozoal, anti-leukemic, and anti-inflammatory properties. In addition, it interferes with several crucial cellular functions, such as oxidized low-density lipoprotein uptake in macrophages, Nef-induced CD4 cell surface downregulation, and mechanisms of endocytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!