Minimizing the shuttle effect by constraining polysulfides to the cathode compartment and activating the passive layer between cathode and separator are highly important for improving the Li-S cell performance, Coulombic efficiency, and cycle life. Here, we report a submicron thin coating of permselective sulfonated poly(ether ether ketone) (SPEEK) composite layer on the separator that would reduce polysulfide crossover, imparting a significant improvement in cycle life. It is observed that SPEEK increases the stability, and adding Nafion improves the capacity value. Among different ratios of Nafion and SPEEK (25:75, 50:50, and 75:25), the composite with a SPEEK/Nafion ratio of 50:50 showed a controlled shuttle effect with a stable cell capacity of 600 mA h g up to 300 cycles. This modified separator with permselective coatings not only reduces the polysulfide shuttle but also improves the wettability and interfacial contact, which results in an improvement in average cell potential and lithium diffusivity. It is demonstrated here that the combination of functional (ionomer coating on separator) and nonfunctional (extra cathode layer) physical barriers effectively suppresses the polysulfide crossover and improves the electrochemical performance of Li-S batteries. The cell shows an initial capacity of 1300 mA h g and a capacity retention of 650 mA h g over 500 cycles with a 6 mg/cm sulfur loading.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b04888DOI Listing

Publication Analysis

Top Keywords

polysulfide crossover
12
li-s batteries
8
cycle life
8
separator
5
permselective speek/nafion
4
speek/nafion composite-coated
4
composite-coated separator
4
separator potential
4
polysulfide
4
potential polysulfide
4

Similar Publications

Ionic Covalent Organic Framework Membrane as Active Separator for Highly Reversible Zinc-Sulfur Battery.

ACS Appl Mater Interfaces

September 2024

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.

Zinc-sulfur (Zn-S) batteries exhibit a high theoretical energy density, nontoxicity, and cost-effectiveness, demonstrating significant potential for integration into large-scale energy storage systems. However, the phenomenon of polysulfide (including dissolved S and S) shuttling is a major issue that results in rapid capacity decay and a short lifespan, limiting the practical performance of sulfur-based batteries. Herein, we fabricated an ionic covalent organic framework (iCOF) membrane as an active separator for the Zn-S battery.

View Article and Find Full Text PDF

The global rapid transition from fossil fuels to renewable energy resources necessitates the implementation of long-duration energy storage technologies owing to the intermittent nature of renewable energy sources. Therefore, the deployment of grid-scale energy storage systems is inevitable. Sulfur-based batteries can be exploited as excellent energy storage devices owing to their intrinsic safety, low cost of raw materials, low risk of environmental hazards, and highest theoretical capacities (gravimetric: 2600 Wh/kg and volumetric: 2800 Wh/L).

View Article and Find Full Text PDF

Doping Engineering of M-N-C Electrocatalyst Based Membrane-Electrode Assembly for High-Performance Aqueous Polysulfides Redox Flow Batteries.

Adv Sci (Weinh)

June 2023

State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.

Polysulfides aqueous redox flow batteries (PS-ARFBs) with large theoretical capacity and low cost are one of the most promising solutions for large-scale energy storage technology. However, sluggish electrochemical redox kinetics and nonnegligible crossover of aqueous polysulfides restrict the battery performances. Herein, it is found that the Co, Zn dual-doped N-C complex have enhanced electrochemical adsorption behaviors for Na S .

View Article and Find Full Text PDF

To realize the practical application of lithium-sulfur (Li-S) batteries, there is a need to inhibit uncontrolled Li deposition by facilitating Li-ion migration, and suppress the irreversible consumption of cathodes by preventing polysulfide shuttling. However, a permselective artifical membrane or interlayer which features fast ion transport but low polysulfide crossover is elusive. Here, we report the design and synthesis of a fluorinated covalent organic framework (4F-COF)-based membrane with a high permselectivity and increased battery lifespan.

View Article and Find Full Text PDF

In the effort to accelerate adsorption and catalytic conversion of lithium polysulfides (Li-PSs) and suppress the shuttle effect of lithium-sulfur batteries (LSBs), the Ti O nanosheets/carbon material-modified separator is successfully fabricated to reducing soluble Li-PSs' crossover from cathode to anode. The catalyst of mesoporous Ti O nanosheets with O-Ti-O units synthesized at low temperature shows both excellent conductivity and high surface area. The modified separator can serve as a diffusion barrier of Li-PSs and catalyst for converting soluble low-chain sulfides into insoluble ones and then remarkably enhance the sulfur utilization and electrochemical performance of the LSB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!