Background: Dysfunction of the gut microbiota is frequently reported as a manifestation of chronic diseases, and therefore presents as a modifiable risk factor in their development. Diet is a major regulator of the gut microbiota, and certain types of dietary fiber may modify bacterial numbers and metabolism, including short-chain fatty acid (SCFA) generation.

Objective: A systematic review and meta-analysis were undertaken to assess the effect of dietary fiber interventions on gut microbiota composition in healthy adults.

Design: A systematic search was conducted across MEDLINE, EMBASE, CENTRAL, and CINAHL for randomized controlled trials using culture and/or molecular microbiological techniques evaluating the effect of fiber intervention on gut microbiota composition in healthy adults. Meta-analyses via a random-effects model were performed on alpha diversity, prespecified bacterial abundances including Bifidobacterium and Lactobacillus spp., and fecal SCFA concentrations comparing dietary fiber interventions with placebo/low-fiber comparators.

Results: A total of 64 studies involving 2099 participants were included. Dietary fiber intervention resulted in higher abundance of Bifidobacterium spp. (standardized mean difference (SMD): 0.64; 95% CI: 0.42, 0.86; P < 0.00001) and Lactobacillus spp. (SMD: 0.22; 0.03, 0.41; P = 0.02) as well as fecal butyrate concentration (SMD: 0.24; 0.00, 0.47; P = 0.05) compared with placebo/low-fiber comparators. Subgroup analysis revealed that fructans and galacto-oligosaccharides led to significantly greater abundance of both Bifidobacterium spp. and Lactobacillus spp. compared with comparators (P < 0.00001 and P = 0.002, respectively). No differences in effect were found between fiber intervention and comparators for α-diversity, abundances of other prespecified bacteria, or other SCFA concentrations.

Conclusions: Dietary fiber intervention, particularly involving fructans and galacto-oligosaccharides, leads to higher fecal abundance of Bifidobacterium and Lactobacillus spp. but does not affect α-diversity. Further research is required to better understand the role of individual fiber types on the growth of microbes and the overall gut microbial community. This review was registered at PROSPERO as CRD42016053101.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqy041DOI Listing

Publication Analysis

Top Keywords

dietary fiber
20
gut microbiota
20
fiber intervention
12
microbiota composition
12
composition healthy
12
intervention gut
8
healthy adults
8
systematic review
8
review meta-analysis
8
fiber interventions
8

Similar Publications

Inclusion of Black Soldier Fly Larval Oil in Ruminant Diets Influences Feed Consumption, Nutritional Digestibility, Ruminal Characteristics, and Methane Estimation in Thai-Indigenous Steers.

J Anim Physiol Anim Nutr (Berl)

January 2025

Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.

The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.

View Article and Find Full Text PDF

Vegetable-Enriched Brownies: A Healthier Twist on a Classic Treat.

Nutrients

January 2025

Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, 21 Mickiewicz Av., 31-120 Krakow, Poland.

Background/objectives: In response to concerns about high-fat and low-fiber diets, this study modified a traditional brownie recipe by replacing butter with plant-based ingredients, including sweet potatoes, red beans, beetroot, zucchini, pumpkin, lentils, and spinach. The goal was to increase vegetable consumption while identifying the best vegetable fat replacer using sensory and instrumental analyses.

Methods: Chemical analyses were conducted to measure dry matter, protein, fat, ash, and dietary fiber, alongside texture, color, and sensory evaluations.

View Article and Find Full Text PDF

To assess the associations between serum and dietary polyunsaturated fatty acids (PUFAs), as well as the inflammatory potential of diet measured by the Children's Dietary Inflammatory Index (C-DII), and recurrent respiratory infections (RRIs) in children. We enrolled 44 children aged 3-16 years with RRIs and 44 healthy controls. Dietary intake was assessed using a 7-day food record from which PUFA intake and C-DII were calculated.

View Article and Find Full Text PDF

Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD).

Nutrients

December 2024

Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition.

View Article and Find Full Text PDF

Introduction Emerging evidence suggests an association between obesity and Functional Gastrointestinal Disorders (FGIDs). Childhood obesity and FGIDs share many common features, such as high prevalence in the pediatric population, risk factors related to diet and lifestyle, gut microbiota impairments, and psychological distress. This narrative review aims to summarize the main evidence regarding FGIDs in childhood obesity, with a specific focus on the role of diet and its impact on the microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!