Formation of aerobic granular sludge and the influence of the pH on sludge characteristics in a SBR fed with brewery/bottling plant wastewater.

Water Sci Technol

Research group BioGEM, Bio-Chemical Green Engineering & Materials, Faculty of Applied Engineering, University of Antwerp, Salesianenlaan 90, 2660 Antwerp, Belgium E-mail:

Published: May 2018

A laboratory-scale sequencing batch reactor (SBR) was operated for 450 days to assess aerobic granule formation when treating brewery/bottling plant wastewater by consistent application of a feast/famine regime. The experiment was divided into three major periods according to the different operational conditions: (I) no pH control and strong fluctuations in organic loading rate (OLR) (1.18 ± 0.25 kgCOD·(m·day)), (II) pH control and aeration control strategy to reduce OLR fluctuations (1.45 ± 0.65 kgCOD·(m·day)) and (III) no pH control and stable OLR (1.42 ± 0.18 kgCOD·(m·day)). Aerobic granule formation was successful after 80 days and maintained during the subsequent 380 days. The aerobic granular sludge was characterized by SVI and SVI values below 60 mL.g and dominated by granular, dense structures. An oxygen uptake rate based aeration control strategy insured endogenous respiration at the end of the aerobic phase, resulting in stable SBR operation when the influent composition fluctuated. The quantitative polymerase chain reaction results show no significant enrichment of Accumulibacter or Competibacter during the granulation process. The 16S rRNA sequencing results indicate enrichment of other, possibly important species during aerobic granule formation while treating brewery wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2018.132DOI Listing

Publication Analysis

Top Keywords

aerobic granule
12
granule formation
12
aerobic granular
8
granular sludge
8
brewery/bottling plant
8
plant wastewater
8
formation treating
8
aeration control
8
control strategy
8
aerobic
5

Similar Publications

Aerobic granules extraction inhibits overgrowth of filamentous bacteria during start-up of aerobic granular sludge.

Bioresour Technol

January 2025

School of Resources and Environment, Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China.

In aerobic granular sludge (AGS) system, N-acyl homoserine lactones (AHLs) can effectively regulate the community structure and control filamentous bulking. It would be economically feasible to make mature granules into AHLs-rich AGS extract (AE) to replace synthesized AHLs. In this study, two SBRs were run in a fully aerobic environment and a short cycle (4 h) to culture AGS: R1 with AE adding; R2 served as control.

View Article and Find Full Text PDF

IRAP Drives Ribosomal Degradation to Refuel Energy for Platelet Activation during Septic Thrombosis.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.

Platelets play crucial roles in multiple pathophysiological processes after energy-dependent activation. It is puzzling how such a small cellular debris has abundant energy supply. In this study, it is shown that insulin-regulated aminopeptidase (IRAP), a type II transmembrane protein, is a key regulator for platelet activation by promoting energy regeneration during septic thrombosis.

View Article and Find Full Text PDF

Aim: Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored.

View Article and Find Full Text PDF

Aerobic granular sludge (AGS) is usually considered to be a biofilm system consisting of granules only, although practical experience suggests that flocs and granules of various sizes co-exist. This study thus focused on understanding the contribution of flocs and granules of various sizes to nitrification in a full-scale AGS-based wastewater treatment plant (WWTP) operated as a sequencing batch reactor (SBR). The size distribution in terms of total suspended solids (TSS) and the distribution of the nitrifying communities and activities were monitored over 14 months.

View Article and Find Full Text PDF

Continuously flowing wastewater-treatment processes can be configured for biological and physical selection to form and retain large biological aggregates (LBAs), along with suspended biomass that contains ordinary biological flocs and biomass that has detached from the LBAs. Suspended biomass and LBAs have different solids residence times (SRTs) and mass-transport resistances. Here, mathematical sub-models that describe metabolic processes, a 1-D biofilm, and spherical carriers that can migrate throughout a wastewater-treatment process were combined to simulate a full-scale demonstration train having anaerobic, anoxic, and oxic zones, as well as side-stream enhanced biological phosphorus removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!